
R Introductory Series

2022

Alexandra L Emmons Ph.D. & Joe Wu Ph.D.

BTEP/GAU/CCR/NCI/NIH - email ncibtep@mail.nih.gov

Bioinformatics Training and Education Program

8

8

8

8

8

8

8

9

9

10

10

10

10

11

11

11

11

12

13

13

Table of Contents

Course Overview

• Course Overview

• Welcome to the R Introductory Series 2022

• A series of introductory lessons in R for scientists.

• Course Expectations / Learning Objectives

• Lesson 1

• Lesson 2

• Lesson 3

• Lesson 4

• Required Course Materials

Learning R - The Basics

• Learning R - The Basics

• Introduction to R and RStudio IDE

• What is R?

• Why R?

• Where do we get R packages?

• Ways to run R

• What is R Studio?

• Getting Started with R and R Studio

• Creating a R project

• Creating a R script

• Introduction to the RStudio layout

14

14

15

16

17

19

19

19

19

20

20

21

24

25

26

26

28

30

31

31

31

31

32

32

32

• Uploading and exporting files from RStudio Server

• Saving your R environment (.Rdata)

• Navigating directories

• Using functions

• Getting help

• Test your learning: Questions 1-2

• R basics

• R objects

• Creating and deleting objects

• Naming conventions and reproducibility

• Reassigning and deleting objects

• Object data types

• Mathematical operations

• Vectors

• Test your learning: Question 3

• Creating, subsetting, modifying, exporting

• Logical subsetting

• Other helpful tricks

• Test your learning: Questions 4-5

• A word about lists

• Saving and loading objects

• Wrapping Up (Review / Questions)

• Exporting your R project

• Acknowledgments

• Additional Resources

33

33

34

36

36

37

38

40

44

46

46

48

55

55

57

57

64

66

67

68

68

70

71

72

72

Data frames & Data Wrangling

• Data frames and Data Wrangling

• Working with tabular data in R

• Introducing tidy data

• Tools for working with tidy data

• Let's load the tidyverse library

• Introducing the airway data

• Importing / exporting data

• Creating and summarizing data frames

• Data frame coercion and accessors

• Test your learning: Questions 1-2

• Subsetting data frames

• Introducing Factors

• Test your learning: Questions 3-4

• Find and replace in R

• Save our data frame to a file

• Introduction to data matrices

• Data wrangling with tidyverse (40 minutes)

• Subsetting with dplyr

• Test your learning

• Test your learning

• Introducing the pipe

• Test your learning

• Mutate and transmute

• Test your learning

• Arrange, group_by, summarize

76

76

76

80

80

80

81

81

82

85

86

90

90

96

100

104

108

109

116

117

118

119

119

119

• Test your learning

• Challenge questions

• Data Reshaping

• Review / Questions

• Acknowledgements

• Resources

Data Visualization: GGplot2

• Data visualization with ggplot2

• Introducing ggplot2

• The ggplot2 template

• Geom functions

• Mapping and aesthetics (aes())

• R objects can also store figures

• Colors

• Facets

• Using multiple geoms per plot

• Statistical transformations

• Coordinate systems

• Labels, legends, scales, and themes

• Saving plots (ggsave())

• Nice plot example

• Recommendations for creating publishable figures

• Complementary packages

• Resource list

• Acknowledgements

120

120

120

121

122

124

124

127

129

130

131

133

133

135

135

Bioconductor and Rmarkdown

• Bioconductor and Data Reporting

• Introducing Bioconductor

• How to install a Bioconductor package?

• Introducing R Markdown

• Creating an Rmarkdown file

• Acknowledgements

• Resources

Test Your Learning

Lesson1 TYL

Lesson1 TYL Solutions

Lesson2 TYL

Lesson2 TYL solutions

Additional Exercises

Exercises: Lesson 2, Part 1

• Lesson 2 Exercise Questions: Part 1 (BaseR subsetting and Factors)

Exercises: Lesson 2 Tidyverse

• Lesson 2 Exercise Questions: Part 2 (Tidyverse)

138

138

143

145

147

147

147

147

DNAnexus

Navigating DNAnexus

• Instruction for using DNAnexus for the Intro to R class

Installing R & RStudio

• Installing R & RStudio

Getting help

Need help?

References

For Further Reading

• Books and / or Book Chapters of Interest

• R Cheat Sheets

• Other Resources

Course Overview

Welcome to the R Introductory Series 2022

A series of introductory lessons in R for scientists.

This course will include a series of lessons for individuals new to R or with limited R experience.

The purpose of this course is to introduce the foundational skills necessary to begin to analyze

and visualize data in R. This course is not designed for those with intermediate R experience

and is not tailored to any one specific type of analysis.

Course Expectations / Learning Objectives

The course will include a series of four lessons taught in two hour blocks over four weeks.

Content has been adapted from material provided by Data Carpentry Intro to R and RStudio for

Genomics (https://datacarpentry.org/genomics-r-intro/) as well as R for Data Science (https://

r4ds.had.co.nz/index.html).

Lesson 1

In this lesson, we will introduce R and RStudio. Learners will explore the RStudio interactive

development environment (IDE) and begin to use functions and assign objects. By the end of

this lesson students should understand how to work within the RStudio environment to create R

projects and R scripts, navigate between directories, use functions, obtain help, and work with

basic objects such as vectors.

Lesson 2

In this lesson, we will learn how to store and work with tabular data in R. Learners will become

acquainted with the basics of data frame manipulation including importing, cleaning,

transforming, and exporting data. For data wrangling, the focus will be on the R tidyverse

collection of packages.

Lesson 3

In this lesson, we will learn how to create publishable figures using the R (ggplot2) package.

This includes an introduction to mapping and aesthetics, building plots iteratively, and

improving plot readability. Additional packages for colors, themes, and statistics integration will

be demonstrated.

8 Course Overview

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/
https://datacarpentry.org/genomics-r-intro/
https://datacarpentry.org/genomics-r-intro/
https://r4ds.had.co.nz/index.html
https://r4ds.had.co.nz/index.html
https://r4ds.had.co.nz/index.html
https://r4ds.had.co.nz/index.html

Lesson 4

In this lesson, we will review major concepts taught in the first three classes. We will explore R

Markdown functionality, to help learners generate shareable, professional, and reproducible

data analysis reports. We will also introduce Bioconductor, including packages for genomic

science and bioinformatics.

Required Course Materials

To participate in this class you will need your government-issued computer and a reliable

internet connection. You do not need to download or install any software to participate in the

class. However, at the end of the class, we will provide instruction on installing R and R Studio

on your local machine.

This class will be taught on the DNAnexus platform. Every learner will need to create a

DNAnexus account (https://dnanexus.com).

9 Course Overview

Bioinformatics Training and Education Program

https://dnanexus.com
https://dnanexus.com

Learning R - The Basics

Introduction to R and RStudio IDE

Objectives

To understand:

1. the difference between R and RStudioIDE.

2. how to work within the RStudio environment including:

creating an Rproject and Rscript

navigating between directories

using functions

obtaining help

3. how R can enhance data analysis reproducibility

By the end of this section, you should be able to easily navigate and explore your RStudio

environment.

What is R?

R is both a computational language and environment for statitical computing and graphics. It is

open-source and widely used by scientists, not just bioinformaticians. Base packages of R are

built into your initial installation, but R functionality is greatly improved by installing other

packages. R as a programming language is based on the S language, developed by Bell

laboratories. R is maintained by a network of collaborators from around the world, and core

contributors are known as the R Core team (Term used for citations). However, R is also a

resource for and by scientists, and R functionality makes it easy to develop and share

packages on any topic. Check out more about R on The R Project for Statistical Computing

(https://www.r-project.org/about.html) website.

Why R?

R is a particularly great resource for statistical analyses, plotting, and report generating. The

fact that it is widely used means that users do not need to reinvent the wheel. There is a

package available for most types of analyses, and if users need help, it is only a google search

away. As of now, CRAN houses 18,825 available packages. There are also many field specific

packages, including those useful in the -omics (genomics, transcriptomics, metabolomics, etc.).

For example, the latest version of Bioconductor (v 3.14) includes 2,083 software packages, 408

experiment data packages, 904 annotation packages, 29 workflows, and 8 books

•

•

•

•

10 Learning R - The Basics

Bioinformatics Training and Education Program

https://www.r-project.org/about.html
https://www.r-project.org/about.html
https://www.r-project.org/about.html
https://www.r-project.org/about.html

Where do we get R packages?

To take full advantage of R, you need to install R packages. R packages are loadable

extensions that contain code, data, documentation, and tests in a standardized shareable

format that can easily be installed by R users. The primary repository for R pacakges is the

Comprehensive R Archive Network (CRAN). CRAN (https://cran.r-project.org/

#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.) is

a global network of servers that store identical versions of R code, packages, documentation,

etc (cran.r-project.org). To install a CRAN package, use install.packages(). Github is

another common source used to store R packages; though, these packages do not necessarily

meet CRAN standards so approach with caution. To install a Github packages use

library(devtools) followed by install_github(). Many genomics and other packages

useful to biologists / molecular biologists can be found on Bioconductor (https://

www.bioconductor.org/) - more on this later. METACRAN (https://www.r-pkg.org/) is a useful

database that allows you to search and browse CRAN/R packages.

Ways to run R

R can be used via command line interactively, command line using a script (https://

support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-

line), or interactively through an environment. This course will demonstrate the utility of the

RStudio integrated development environment (IDE).

What is R Studio?

RStudio (https://www.rstudio.com/products/rstudio/) includes a console, editor, and tools for

plotting, history, debugging, and work space management. It provides a graphic user interface

for working with R, thereby making R more user friendly. RStudio is open-source and can be

installed locally or used through a browser (RStudio Server). We will be showcasing RStudio

Server, but we highly encourage new users to install R and RStudio locally to their PC or

macbook.

Getting Started with R and R Studio

This tutorial closely follows the Intro to R and RStudio for Genomics lesson provided by

datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-introduction/index.html).

Installing R and RStudio

Detailed Instructions for installing R and RStudio can be found

[here](https://btep.ccr.cancer.gov/docs/rtools/).

11 Learning R - The Basics

Bioinformatics Training and Education Program

https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://cran.r-project.org/#:~:text=CRAN%20is%20a%20network%20of,you%20to%20minimize%20network%20load.
https://www.bioconductor.org/
https://www.bioconductor.org/
https://www.bioconductor.org/
https://www.bioconductor.org/
https://www.r-pkg.org/
https://www.r-pkg.org/
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://support.rstudio.com/hc/en-us/articles/218012917-How-to-run-R-scripts-from-the-command-line
https://www.rstudio.com/products/rstudio/
https://www.rstudio.com/products/rstudio/
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html

Creating a R project

Creating an R project for each project you are working on facilitates organization and scientific

reproducibility.

An RStudio project allows you to more easily:

Save data, files, variables, packages, etc. related to a specific analysis

project

Restart work where you left off

Collaborate, especially if you are using version control such as git. ---

datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-introduction/

index.html)

To start a new R project, select File > New Project... or use the R project button (See

image below)

A New project wizard will appear. Click New Directory and New Project. Choose a new

directory name...perhaps 'Learning_R_for_genomics'? To make your project more reproducible,

consider clicking the option box for renv. The R project file ends in .Rproj.

One of the most wonderful and also frustrating aspects of working with R is

managing packages. Unfortunately it is very common that you may run into

versions of R and/or R packages that are not compatible. This may make it difficult

for someone to run your R script using their version of R or a given R package, and/

or make it more difficult to run their scripts on your machine. renv is an RStudio

add-on that will associate your packages and project so that your work is more

portable and reproducible. To turn on renv click on the Tools menu and select

Project Options. Under Enviornments check off “Use renv with this project” and

follow any installation instructions. ---datacarpentry.org (https://datacarpentry.org/

genomics-r-intro/01-introduction/index.html)

•

•

•

12 Learning R - The Basics

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html

Creating a R script

As we learn more about R and start learning our first commands, we will keep a record of our

commands using an R script. Remember, good annotation is key to reproducible data analysis.

An R script can also be generated to run on its own without user interaction.

To create an R script, click File > New File > R Script. You can save your script by

clicking on the floppy disk icon. You can name your script whatever you want, perhaps

"LearningR_intro". R scripts end in .R. Save your R script to your working directory, which will be

the default location on RStudio Server.

Introduction to the RStudio layout

Let's look a bit into our RStudio layout. (demonstrate minimize / maximize utility)

Source: This pane is where you will write/view R scripts. Some outputs (such as if

you view a dataset using View()) will appear as a tab here.

Console/Terminal/Jobs: This is actually where you see the execution of commands.

This is the same display you would see if you were using R at the command line

without RStudio. You can work interactively (i.e. enter R commands here), but for

the most part we will run a script (or lines in a script) in the source pane and watch

their execution and output here. The “Terminal” tab give you access to the BASH

terminal (the Linux operating system, unrelated to R). RStudio also allows you to run

jobs (analyses) in the background. This is useful if some analysis will take a while to

run. You can see the status of those jobs in the background.

Environment/History: Here, RStudio will show you what datasets and objects

(variables) you have created and which are defined in memory. You can also see

13 Learning R - The Basics

Bioinformatics Training and Education Program

some properties of objects/datasets such as their type and dimensions. The

“History” tab contains a history of the R commands you’ve executed R.

Files/Plots/Packages/Help/Viewer: This multipurpose pane will show you the

contents of directories on your computer. You can also use the “Files” tab to

navigate and set the working directory. The “Plots” tab will show the output of any

plots generated. In “Packages” you will see what packages are actively loaded, or

you can attach installed packages. “Help” will display help files for R functions and

packages. “Viewer” will allow you to view local web content (e.g. HTML outputs).

---datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-introduction/

index.html)

Note: you can already see our R project and R script file in our project directory under the

Files tab. If you chose to use renv you will also see some files and directories related to that.

Additional panes may show up depending on what you are doing in RStudio. For example, you

may notice a Render tab in the Console/Terminal/Jobs pane when working with Rmarkdown

files (.Rmd).

Also, you can change your RStudio layout. See this blog (https://www.r-bloggers.com/2018/05/

a-perfect-rstudio-layout/) if you are interested. For simplicity, please do NOT change the layout

during this course.

Uploading and exporting files from RStudio Server

RStudio Server works via a web browser, and so you see this additional Upload option in the

Files pane. If you select this option, you can upload files from your local computer into the

server environment. If you select More, you will also see an Export option. You can use this to

export the files created in the RStudio environment.

Saving your R environment (.Rdata)

When exiting RStudio, you will be prompted to save your R workspace or .RData. The .RData

file saves the objects generated in your R environment. You can also save the .RData at any

14 Learning R - The Basics

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/
https://www.r-bloggers.com/2018/05/a-perfect-rstudio-layout/

time using the floppy disk icon just below the Environment tab. You may also save your R

workspace from the console using save.image(). RData files are usually not visible in a

directory. You can see them using ls -a from the terminal. RData files within a working

directory associated with a given project will launch automatically under the default option

Restore .RData into workspace at startup. You may also load .Rdata by using load().

Navigating directories

Now we are ready to work with some of our first R commands. We are going to run commands

directly from our R script rather than typing into the R console.

Our first command will be getwd(). This simply prints your working directory and is the R

equivalent of pwd (if you know unix coding).

To run this command, we have a number of options. First, you can use the Run button above.

This will run highlighted or selected code. You may also use the source button to run your entire

script. My preferred method is to use keyboard shortcuts. Move your cursor to the code of

interest and use command + enter for macs or control + enter for PCs. If a command is

taking a long time to run and you need to cancel it, use control + c from the command line or

escape in RStudio. Once you run the command, you will see the command print to the console

in blue followed by the output.

It is good practice to annotate your code using a comment. We can denote comments with #.

We set our working directory when we created our R project, but if for some reason we needed

to set our working directory, we can do this with setwd(). There is no need to run currently.

However, if you were to run it, you would use the following notation:

The path should be in quotes. You can use tab completion to fill in the path.

TIP: Never use setwd() in a script.

Wait, what was the last 2 minutes about? Well, setting your working directory is

something you need to do, you need to be very careful about using this as a step in

your script. For example, what if your script is being on a computer that has a

different directory structure? The top-level path in a Unix file system is root /, but on

#print our working directory

getwd()

[1] "/home/rstudio/Learning_R_for_genomics"

setwd("/home/rstudio/Rlearning")

15 Learning R - The Basics

Bioinformatics Training and Education Program

Windows it is likely C:. This is one of several ways you might cause a script to break

because a file path is configured differently than your script anticipates. R

packages like here and file.path allow you to specify file paths is a way that is more

operating system independent. See Jenny Bryan’s blog post for this and other R

tips. ---datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-

introduction/index.html)

Note: R uses unix formatting for directories, so regardless of whether you have a Windows

computer or a mac, the way you enter the directory information will be the same. You can use

tab completion to help you fill in directory information.

Using functions

A function in R (or any computing language) is a short program that takes some

input and returns some output.

An R function has three key properties:

Functions have a name (e.g. dir, getwd); note that functions are case

sensitive!

Following the name, functions have a pair of ()

Inside the parentheses, a function may take 0 or more arguments ---

datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-introduction/

index.html)

We have already used some R functions (e.g. getwd() and setwd())! Let's look at another

example using the round() function. round() "rounds the values in its first argument to the

specified number of decimal places (default 0)" --- R help.

Consider

In this example, we only provided the required argument in this case, which was any numeric or

complex vector. We can see that two arguments can be included by the context prompt while

typing (See below image). The optional second argument (i.e., digits) indicates the number of

•

•

•

round(5.65) #can provide a single number

[1] 6

round(c(5.65,7.68,8.23)) #can provide a vector

[1] 6 8 8

16 Learning R - The Basics

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html

decimal places to round to. Contextual help is generally provided as you type the name of a

function. We will discuss other types of help in a moment.

At times a function may be masked by another function. This can happen if two functions are

named the same (e.g., dplyr::filter() vs plyr::filter()). We can get around this by

explicitly calling a function from the correct package using the following syntax:

package::function().

Getting help

Now we know a bit about using functions, but what if I had no idea what the function round()

was used for or what arguments to provide?

Getting help in R is fairly easy. In the pane to the bottom right, you should see a Help tab. You

can search for help regarding a specific topic using the search field (look for the magnifying

glass).

#provide an additional argument rounding to the tenths place

round(5.65,digits=1)

[1] 5.7

17 Learning R - The Basics

Bioinformatics Training and Education Program

Alternatively, you can search directly for help in the console using ?round() or ??round().

The ?? annotation is used if the function you want help on is from an unloaded package.

help.search() can be used to search for a function using a keyword; for example, you may

try help.search("anova").

R help pages provide a lot of information. The description and argument sections are likely

where you will want to start. If you are still unsure how to use the function, scroll down and

check out the examples section of the documentation.

Many R packages also include more detailed help documentation known as a vignette. To see a

package vignette, use browseVignettes() (e.g.,

browseVignettes(package="dplyr")).

To see a function's arguments, you can use args().

round() takes two arguments, x, which is the number to be rounded, and a digits

argument. The = sign indicates that a default (in this case 0) is already set. Since x

is not set, round() requires we provide it, in contrast to digits where R will use the

default value 0 unless you explicitly provide a different value. --- datacarpentry.org

(https://datacarpentry.org/genomics-r-intro/01-introduction/index.html)

R arguments are also positional, so instead of including digits=1 in our above use of round(),

we could instead do the following:

args(round)

function (x, digits = 0)

NULL

18 Learning R - The Basics

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html

Test your learning: Questions 1-2

R basics

Objectives: To understand some of the most basic features of the R language including:

Creating R objects and understanding object types

Using mathematical operations

Using comparison operators

Creating, subsetting, and modifying vectors

By the end of this section, you should understand what an object and vector is and how to

access and work with objects and vectors.

R objects

Everything assigned a value in R is technically an object in which a method (or function) can act

on. Therefore, objects are data structures with specific attributes and methods that can be

applied to them. They are what gets assigned to memory in R and are of a specific type or

class. Objects include things like vectors, lists, matrices, arrays, factors, and data frames. In

order to be assigned to memory, an r object must be created.

Creating and deleting objects

To create an R object, you need a name, a value, and an assignment operator (e.g., <- or =)

(https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html). R is

case sensitive, so an object with the name "FOO" is not the same as "foo".

Let's create a simple object and run our code. There are a few methods to run code (the run

button, key shortcuts (Windows: ctrl+Enter, Mac: cmd+Enter), or in type directly in the console).

round(5.65, 1)

[1] 5.7

•

•

•

•

#You can and should annotate your code with comments for better

#reproducibility.

a<-1

#Simply call the name of the object to print the value to the screen

a

19 Learning R - The Basics

Bioinformatics Training and Education Program

../Test_Your_Learning/Lesson1_TYL/
../Test_Your_Learning/Lesson1_TYL/
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html
https://blog.revolutionanalytics.com/2008/12/use-equals-or-arrow-for-assignment.html

In this example, "a" is the name of the object, 1 is the value, and <- is the assignment operator.

Naming conventions and reproducibility

There are rules regarding the naming of objects.

1. Avoid spaces or special characters EXCEPT '_'

2. No numbers at the beginning of an object name.

For example:

Note: It is generally a good habit to not begin sample names with a number.

In contrast:

What do you think would have happened if we didn't put 'apples' in quotes.

3.Avoid common names with special meanings or assigned to existing functions (These will

auto complete).

See the tidyverse style guide (https://style.tidyverse.org/syntax.html) for more information on

naming conventions.

To view a list of the objects you have created, use `ls()' or look at your global environment pane.

Reassigning and deleting objects

To reassign an object, simply overwrite the object.

[1] 1

1a<-"apples" # this will throw and error

1a

Error: <text>:1:2: unexpected symbol

1: 1a

^

a<-"apples" #this works fine

a

[1] "apples"

20 Learning R - The Basics

Bioinformatics Training and Education Program

https://style.tidyverse.org/syntax.html
https://style.tidyverse.org/syntax.html

R will not warn you when objects are being overwritten, so use caution.

To delete an object from memory:

Object data types

R objects have certain attributes, and these attributes will be important for how they can interact

with certain methods / functions. Understanding the mode or the classification (type) of an

object will be important for how an object can be used in R. When the mode of an object is

changed, we call this "coercion". You may see a coercion warning pop up when working with

objects in the future.

#object with gene named 'tp53'

gene_name<-"tp53"

gene_name

[1] "tp53"

#if instead we want to reassign gene_name to a different gene,

#we would use:

gene_name<-"GH1"

gene_name

[1] "GH1"

delete the object 'gene_name'

rm(gene_name)

#the object no longer exists, so calling it will result in an error

gene_name

Error in eval(expr, envir, enclos): object 'gene_name' not found

21 Learning R - The Basics

Bioinformatics Training and Education Program

Data types are familiar in many programming languages, but also in natural

language where we refer to them as the parts of speech, e.g. nouns, verbs,

adverbs, etc. Once you know if a word - perhaps an unfamiliar one - is a noun, you

can probably guess you can count it and make it plural if there is more than one

(e.g. 1 Tuatara, or 2 Tuataras). If something is a adjective, you can usually change it

into an adverb by adding “-ly” (e.g. jejune vs. jejunely). Depending on the context,

you may need to decide if a word is in one category or another (e.g “cut” may be a

noun when it’s on your finger, or a verb when you are preparing vegetables). These

concepts have important analogies when working with R objects.

--- datacarpentry.org (https://datacarpentry.org/genomics-r-intro/02-r-basics/

index.html)

The mode or type of an object can be examined using mode() or typeof().

Let's create some object and determine their types.

22 Learning R - The Basics

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html

As you can see, the output of mode() and typeof() is largely the same but typeof() does

differ in some cases and is based on the storage mode. So numeric types can be stored in

memory differently, with doubles taking up more memory than an integer, for example. If this is

confusing, you can alwasy read the documentation ?mode() and ?typeof(). Searching for

help provided this nifty R explanation for mode vs type names.

There are also functions that can gage types directly, for example, is.numeric(),

is.character(), is.logical().

chromosome_name <- 'chr02'

mode(chromosome_name)

[1] "character"

typeof(chromosome_name)

[1] "character"

od_600_value <- 0.47

mode(od_600_value)

[1] "numeric"

typeof(od_600_value)

[1] "double"

chr_position <- '1001701bp'

mode(chr_position)

[1] "character"

typeof(chr_position)

[1] "character"

spock <- TRUE

mode(spock)

[1] "logical"

typeof(spock)

[1] "logical"

23 Learning R - The Basics

Bioinformatics Training and Education Program

There are some special use, null-able values. Read more to learn about NULL, NA, NaN, and

Inf (https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/).

Mathematical operations

As mentioned, an object's mode can be used to understand the methods that can be applied to

it. Objects of mode numeric can be treated as such, meaning mathematical operators can be

used directly with those objects.

This chart from datacarpentry.org (https://datacarpentry.org/genomics-r-intro/02-r-basics/

index.html) shows many or the mathematical operators used in R.

Let's see this in practice.

Moreover, we do not need an object to perform mathematical computations. R can be used like

a calculator.

For example

#create an object storing the number of human chromosomes (haploid)

human_chr_number<-23

#let's check the mode of this object

mode(human_chr_number)

[1] "numeric"

#Now, lets get the total number of human chromosomes (diploid)

human_chr_number * 2 #The output is 46!

[1] 46

24 Learning R - The Basics

Bioinformatics Training and Education Program

https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://www.r-bloggers.com/2018/07/r-null-values-null-na-nan-inf/
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html

Vectors

Vectors are probably the most used commonly used object type in R. A vector is a

collection of values that are all of the same type (numbers, characters, etc.). The

columns that make up a data frame are vectors. One of the most common ways to

create a vector is to use the c() function - the “concatenate” or “combine”

function. Inside the function you may enter one or more values; for multiple values,

separate each value with a comma. --- datacarpentry.org (https://

datacarpentry.org/genomics-r-intro/02-r-basics/index.html).

Another property of vectors worth exploring is their length. Try length()

In addition, you can assess the underlying structure of the object (vector in this case) by using

str(). str() will be invaluable for understanding more complicated objects such as matrices

and data frames, which will be discussed later.

(1 + (5 ** 0.5))/2

[1] 1.618034

#create a vector of gene names

transcript_names<-c("TSPAN6","TNMD","SCYL3","GCLC")

#Let's check out the mode. What do you think?

mode(transcript_names)

[1] "character"

typeof(transcript_names)

[1] "character"

length(transcript_names)

[1] 4

#this will return propoerties of the object's underlying structure;

#in this case, the length and type

str(transcript_names)

chr [1:4] "TSPAN6" "TNMD" "SCYL3" "GCLC"

25 Learning R - The Basics

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html
https://datacarpentry.org/genomics-r-intro/02-r-basics/index.html

Test your learning: Question 3

Creating, subsetting, modifying, exporting

Let's learn how to further work with vectors, including creating, sub-setting, modifying, and

saving.

There may be moments where you want to retrieve a specific value or values from a vector. To

do this, we use bracket notation sub-setting.In bracket notation, you call the name of the vector

followed by brackets. The brackets contain an index for the value that we want.

In R vector indices start with 1 and end with length(vector). This is important and can differ

based on programming language. So to extract the last element in a vector, you could use the

following annotation:

This is the same as:

#We know this is a vector from the length but you could always

#check with

is.vector(transcript_names)

[1] TRUE

#Some possible RNASeq data

cell_line<- c("N052611", "N061011", "N080611", "N61311")

sample_id <- c("SRR1039508", "SRR1039509", "SRR1039512",

"SRR1039513", "SRR1039516", "SRR1039517", "SRR1039520", "SRR1039521")

transcript_counts <- c(679, 0, 467, 260, 60, 0)

#Get the second value from the vector cell_types

cell_line[2]

[1] "N061011"

 #retrieve the last element in the sample_id vector

 sample_id[length(sample_id)]

[1] "SRR1039521"

26 Learning R - The Basics

Bioinformatics Training and Education Program

../Test_Your_Learning/Lesson1_TYL/
../Test_Your_Learning/Lesson1_TYL/

You may also want to subset a range of values.

The combine function c() can be used to add an element to a vector.

Indexing can be used to remove a value.

We can rename a value by

sample_id[8] #retrieve the last element in the sample_id vector

[1] "SRR1039521"

#Retrieve the second and third value from cell_types

cell_line[2:3]

[1] "N061011" "N080611"

#Retrieve the first, fifth, and sixth values from transcript_counts

transcript_counts[c(1,5:6)]

[1] 679 60 0

#Lets add a gene to transcript_names

#The object will not be overwritten without assigning it to a name

transcript_names<-c(transcript_names,"ANAPC10P1","ABCD1")

transcript_names

[1] "TSPAN6" "TNMD" "SCYL3" "GCLC" "ANAPC10P1" "ABCD1"

#Let's remove "SCYL3"

transcript_names<-transcript_names[-3]

transcript_names

[1] "TSPAN6" "TNMD" "GCLC" "ANAPC10P1" "ABCD1"

27 Learning R - The Basics

Bioinformatics Training and Education Program

Logical subsetting

It is also possible to subset in R using logical evaluation or numerical comparison. To do this,

we use comparison operators (See table below).

Comparison Operator Description

> greater than

>= greater than or equal to

< less than

<= less than or equal to

!= Not equal

== equal

a | b a or b

a & b a and b

So if, for example, we wanted a subset of all transcript counts greater than 260, we could use

indexing combined with a comparison operator:

#Let's rename "GCLC"

transcript_names[3]<-"NNAME"

transcript_names

[1] "TSPAN6" "TNMD" "NNAME" "ANAPC10P1" "ABCD1"

#We can also call a value directly

#Rename "ABCD1" to "NEW"

#more on this to come

transcript_names[transcript_names == "ABCD1"] <- "NEW"

transcript_names

[1] "TSPAN6" "TNMD" "NNAME" "ANAPC10P1" "NEW"

transcript_counts[transcript_counts > 260]

[1] 679 467

28 Learning R - The Basics

Bioinformatics Training and Education Program

Why does this work? Let's break down the code.

This returns a logical vector. We can see that positions 1 and 3 are TRUE, meaning they are

greater than 260. Therefore, the initial subsetting above is asking for a subset based on TRUE

values. Here is the equivalent:

You can also use this functionality to do a kind of find and replace. Perhaps we want to find

zero values and replace them with NAs. We could use:

Note: if you instead ran transcript_counts[transcript_counts==0]<-"NA", you would

coerce this vector to a character vector.

Now, if we want to return only values that aren't NAs, we can use

transcript_counts > 260

[1] TRUE FALSE TRUE FALSE FALSE FALSE

transcript_counts[c(TRUE, FALSE, TRUE, FALSE, FALSE, FALSE)]

[1] 679 467

transcript_counts[transcript_counts==0]<-NA

transcript_counts[!is.na(transcript_counts)] #values that aren't NAs

[1] 679 467 260 60

is.na(transcript_counts) #if you simply want to know if there are NAs

[1] FALSE TRUE FALSE FALSE FALSE TRUE

which(is.na(transcript_counts)) #if you want the indices of those NAs

29 Learning R - The Basics

Bioinformatics Training and Education Program

To make scripting reproducible, you could avoid calling a specific number directly and use

objects in logical evaluations like those above. If we use an object, the value itself could easily

be replaced with whatever value is needed. For example:

Other helpful tricks

There may be a time you want to know whether there are specific values in your vector. To do

this, we can use the %in% operator. This operator returns TRUE for any value that is in your

vector.

For example:

[1] 2 6

trnsc_cutoff <- 260

#note this will also include NAs in the output

transcript_counts[transcript_counts>trnsc_cutoff]

[1] 679 NA 467 NA

#if we want to exclude possible NAs, something like this will work

transcript_counts[!is.na(transcript_counts) &

transcript_counts>trnsc_cutoff]

[1] 679 467

have a look at transcipt_names

transcript_names

[1] "TSPAN6" "TNMD" "NNAME" "ANAPC10P1" "NEW"

test to see if "NNAME" and "ANAPC10P1" are in this vector

if you are looking for more than one value, you must pass this as

a vector

c("NNAME","ANAPC10P1") %in% transcript_names

30 Learning R - The Basics

Bioinformatics Training and Education Program

This type of searching will come in handy when we discuss filtering in Lesson 2.

Test your learning: Questions 4-5

A word about lists

Data can also be stored in lists, which include multiple types / modes of data. You may receive

output at some point in the form of a list. For a brief introduction to lists, see this nice tutorial on

towards data science (https://towardsdatascience.com/introduction-to-lists-in-r-ff6469e6ca79).

Saving and loading objects

We discussed saving the R workspace (.RData), but what if we simply want to save a single

object. In such a case, we can use saveRDS().

Let's save our transcript_counts vector to our working directory.

Check the Files pane for your newly created file. Make sure you are viewing the contents of

your working directory (getwd()).

Wrapping Up (Review / Questions)

Are there any questions?

[1] TRUE TRUE

#We could also save the search vector to an object and search

#that way.

find_transcripts<-c("NNAME","ANAPC10P1")

find_transcripts %in% transcript_names

[1] TRUE TRUE

saveRDS(transcript_counts,"transcript_counts.rds")

31 Learning R - The Basics

Bioinformatics Training and Education Program

../Test_Your_Learning/Lesson1_TYL/
../Test_Your_Learning/Lesson1_TYL/
https://towardsdatascience.com/introduction-to-lists-in-r-ff6469e6ca79
https://towardsdatascience.com/introduction-to-lists-in-r-ff6469e6ca79

Exporting your R project

To use the materials you generated on the RServer on DNAnexus on your local computer, let's

export our files. To do this, let's select all files in our working directory. This will export a zipped

file with the contents of your working directory.

If you plan to use these files again on DNAnexus, simply use Upload. To upload a directory, the

contents must be zipped. To zip a directory on a mac, simply right click on the directory and

select Compress "directory_name". To zip a directory on a PC, right click the folder and choose

"Send to: Compressed (zipped) folder".

Acknowledgments

Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for

Genomics lesson provided by datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-

introduction/index.html).

Additional Resources

Hands-on Programming with R (https://rstudio-education.github.io/hopr/)

32 Learning R - The Basics

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://rstudio-education.github.io/hopr/
https://rstudio-education.github.io/hopr/

Data frames and Data Wrangling

Objectives

To be able to load, tidy, and work with tabular data. To this end, students should understand the

following:

1. how to import and export data

2. how to create, summarize, and subset data frames

3. what is a factor and why do we care?

4. what is a data matrix and how does this differ from a data frame?

5. how can we tidy our data and efficiently wrangle data using tidyverse

Working with tabular data in R

In genomics, we work with a lot of tabular data (and non-tabular data). An old school method of

working with this data may be to open in excel and manually work with the data. However, there

are a number of reasons why this can be to your detriment. First, it is very easy to make

mistakes when working with large amounts of tabular data in excel. Have you ever mistakenly

left out a column while sorting data? Second, many of the files that we work with are so large

(big data) that excel and your local machine do not have the bandwidth to handle them. Third,

you will likely need to apply analytical techniques that are unavailable in excel.

R can make analyzing tabular data more efficient and reproducible. But before getting into

working with this data in R, let's review some best practices for data management.

Best Practices for organizing genomic data

"Keep raw data separate from analyzed data" -- datacarpentry.org (https://

datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html)

For large genomic data sets, I recommend having a project folder with two main subdirectories

(i.e., raw_data and data_analysis). You may even consider changing the permissions (check

out the unix command chmod (https://www.howtogeek.com/437958/how-to-use-the-chmod-

command-on-linux/)) in your raw directory to make those files read only. Keeping raw data

separate is not a problem in R, as one must explicitly import and export data.

"Keep spreadsheet data Tidy" -- datacarpentry.org (https://datacarpentry.org/

genomics-r-intro/03-basics-factors-dataframes/index.html)

1.

1.

33 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://www.howtogeek.com/437958/how-to-use-the-chmod-command-on-linux/
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html

Data organization can be frustrating, and many scientists devote a greate deal of time and

energy toward this task. Keeping data tidy, which we will talk about more in a few minutes, can

make data science more efficient, effective, and reproducible.

"Trust but verify" -- datacarpentry.org (https://datacarpentry.org/genomics-r-

intro/03-basics-factors-dataframes/index.html)

R makes data analysis more reproducible and can eliminate some mistakes from human error.

However, you should approach data analysis with a plan, and make sure you understand what

a function is doing before applying it to your data. Hopefully, today's lesson will help with this.

Often using small subsets of data can be used as a form of data debugging to make sure the

expected result materialized.

Introducing tidy data

Tidy data is an approach (or philosophy) to data organization and management. There are

three rules to tidy data: (1) each variable forms its own column, (2) each observation forms a

row, and (3) each value has its own cell. One advantage to following these rules is that the data

structure remains consistent, making it easier to understand the tools that work well with the

underlying structure, and there are a lot of tools in R built specifically to interact with tidy data.

Equipped with the right tools will make data analysis more efficient. See the infographics below.

{width=75%} Image from Lowndes and Horst 2020: Tidy Data for Efficiency, Reproducibility, and

Collaboration (https://www.openscapes.org/blog/2020/10/12/tidy-data/)

1.

34 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://www.openscapes.org/blog/2020/10/12/tidy-data/
https://www.openscapes.org/blog/2020/10/12/tidy-data/
https://www.openscapes.org/blog/2020/10/12/tidy-data/

{width=75%}

Image from Lowndes and Horst 2020: Tidy Data for Efficiency, Reproducibility, and

Collaboration (https://www.openscapes.org/blog/2020/10/12/tidy-data/)

“Tidy datasets are all alike, but every messy dataset is messy in its own way.” ––

Hadley Wickham

35 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://www.openscapes.org/blog/2020/10/12/tidy-data/
https://www.openscapes.org/blog/2020/10/12/tidy-data/
https://www.openscapes.org/blog/2020/10/12/tidy-data/

Tools for working with tidy data

{width=35%}

The tidyverse is an opinionated collection of R packages designed for data

science. All packages share an underlying design philosophy, grammar, and data

structures. ---tidyverse.org (https://www.tidyverse.org/)

The core packages within tidyverse include dplyr, ggplot2, forcats, tibble, readr,

stringr, tidyr, and purr. We will be focusing more on forcats, dplyr, and ggplot2

today and in the lessons to come.

Let's load the tidyverse library

library(tidyverse)

36 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://www.tidyverse.org/
https://www.tidyverse.org/

Before we get to data cleaning and transformation, which together are known as data

wrangling, we have a few key objects (i.e., data frames) and methods (e.g., importing and

exporting) to cover. We will return to tidy data and data wrangling in a bit.

Introducing the airway data

There are data sets available in R to practice with or showcase different packages. For today's

lesson and the remainder of this course, we will use data from the Bioconductor package

airway (https://bioconductor.org/packages/release/data/experiment/html/airway.html) to

showcase tools used for data wrangling and visualization. The use of this data was inspired by

a 2021 workshop entitled Introduction to Tidy Transciptomics (https://stemangiola.github.io/

bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html) by Maria Doyle and Stefano

Mangiola. Code has been adapted from this workshop to explore tidyverse functionality.

The airway data is from Himes et al. (2014) (https://pubmed.ncbi.nlm.nih.gov/24926665/). These

data, which are contained within a RangedSummarizedExperiment, object are from a bulk

RNAseq experiment. In the experiment, the authors "characterized transcriptomic changes in

four primary human ASM cell lines that were treated with dexamethasone," a common therapy

for asthma. The airway package includes RNAseq count data from 8 airway smooth muscle

cell samples. Each cell line includes a treated and untreated negative control. Note, current

recommendations indicate that there should be 3-5 sample replicates for an RNAseq

experiment.

Do not worry about the RangedSummarizedExperiment. The data we will use today and next

week have been provided to you in the following files:

filtlowabund_scaledcounts_airways.txt Includes scaled transcript count data

diffexp_results_edger_airways.txt Includes results from differential expression analysis using

EdgeR.

Object (.rds) files have also been included.

── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──

✓ ggplot2 3.3.5 ✓ purrr 0.3.4

✓ tibble 3.1.6 ✓ dplyr 1.0.7

✓ tidyr 1.1.4 ✓ stringr 1.4.0

✓ readr 2.1.1 ✓ forcats 0.5.1

── Conflicts ── tidyverse_conflicts() ──

x dplyr::filter() masks stats::filter()

x dplyr::lag() masks stats::lag()

37 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://bioconductor.org/packages/release/data/experiment/html/airway.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
../data/filtlowabund_scaledcounts_airways.txt
../data/filtlowabund_scaledcounts_airways.txt
../data/filtlowabund_scaledcounts_airways.txt
../data/diffexp_results_edger_airways.txt
../data/diffexp_results_edger_airways.txt
../data/diffexp_results_edger_airways.txt

Note: Bioconductor will be discussed further in Lesson 4.

Importing / exporting data

Before we can do anything with our data, we need to first import it into R. There are several

ways to do this.

First, the RStudio IDE has a dropdown menu for data import. Simply go to File > Import

Dataset and select one of the options and follow the prompts. Note: readr is a tidyverse

package but it isn't necessary for import. You can read more about readr and its advantages

here (https://readr.tidyverse.org/)

Let's focus on the base R import functions. These include read.csv(), read.table(),

read.delim(), etc. You should examine the function arguments (e.g., ?read.delim()) to

get an idea of what is happening at import and ensure that your data is being parsed correctly.

#Let's import our data and save to an object called scaled_counts

scaled_counts<-read.delim(

 "./data/filtlowabund_scaledcounts_airways.txt", as.is=TRUE)

38 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://readr.tidyverse.org/
https://readr.tidyverse.org/

We can now see this object in our RStudio environment pane.

This object can be viewed by clicking on it in the environment pane. Alternatively, you can use

View(scaled_counts)

To import an existing object, we usereadRDS().

#Let's import our data from the .rds file

#and save to an object called scaled_counts_rds

scaled_counts_rds<-

 data.frame(readRDS("./data/filtlowabund_scaledcounts_airways.rds"))

39 Data frames and Data Wrangling

Bioinformatics Training and Education Program

Note: Using RStudio functionality, you can navigate to the files tab and click on the .rds file of

interest. You will receive a prompt asking if you would like to load the object into R.

To export data to file, you will use similar functions

(write.table(),write.csv(),saveRDS(), etc.). We will show how these work later in the

lesson.

Creating and summarizing data frames

The object (scaled_counts) that we imported is a data frame. Data frames hold tabular data.

They are collections of vectors of the same length, but can be of different types. Because we

often have data of multiple types, it is natural to examine that data in a data frame.

Let's learn a bit more about our data frame. First, we can learn more about the structure of our

data using str().

str() shows us that we are looking at a data frame object with 127,408 observations in 18

variables (or columns). The column names are to the far left preceded by a $. This is a data

frame accessor, and we will see how this works later. We can also see the data type (character,

integer, logical, numeric) after the column name. This will help us understand how we can

transform and visualize the data in these columns.

str(scaled_counts)

'data.frame': 127408 obs. of 18 variables:

$ feature : chr "ENSG00000000003" "ENSG00000000419" "ENSG00000000457" "ENSG00000000460" ...

$ sample : int 508 508 508 508 508 508 508 508 508 508 ...

$ counts : int 679 467 260 60 3251 1433 519 394 172 2112 ...

$ SampleName : chr "GSM1275862" "GSM1275862" "GSM1275862" "GSM1275862" ...

$ cell : chr "N61311" "N61311" "N61311" "N61311" ...

$ dex : chr "untrt" "untrt" "untrt" "untrt" ...

$ albut : chr "untrt" "untrt" "untrt" "untrt" ...

$ Run : chr "SRR1039508" "SRR1039508" "SRR1039508" "SRR1039508" ...

$ avgLength : int 126 126 126 126 126 126 126 126 126 126 ...

$ Experiment : chr "SRX384345" "SRX384345" "SRX384345" "SRX384345" ...

$ Sample : chr "SRS508568" "SRS508568" "SRS508568" "SRS508568" ...

$ BioSample : chr "SAMN02422669" "SAMN02422669" "SAMN02422669" "SAMN02422669" ...

$ transcript : chr "TSPAN6" "DPM1" "SCYL3" "C1orf112" ...

$ ref_genome : chr "hg38" "hg38" "hg38" "hg38" ...

$.abundant : logi TRUE TRUE TRUE TRUE TRUE TRUE ...

$ TMM : num 1.06 1.06 1.06 1.06 1.06 ...

$ multiplier : num 1.42 1.42 1.42 1.42 1.42 ...

$ counts_scaled: num 960.9 660.9 367.9 84.9 4600.7 ...

40 Data frames and Data Wrangling

Bioinformatics Training and Education Program

We can also get an overview of summary statistics of this data frame using summary().

Our data frame has 18 variables, so we get 18 fields that summarize the data. Counts,

avgLength, TMM, multiplier, and counts_scaled are numerical data and so we get summary

statistics on the min and max values for these columns, as well as mean, median, and

interquartile ranges.

summary(scaled_counts)

feature sample counts SampleName

Length:127408 Min. :508.0 Min. : 0 Length:127408

Class :character 1st Qu.:511.2 1st Qu.: 66 Class :character

Mode :character Median :514.5 Median : 310 Mode :character

Mean :514.5 Mean : 1376

3rd Qu.:517.8 3rd Qu.: 960

Max. :521.0 Max. :513766

cell dex albut Run

Length:127408 Length:127408 Length:127408 Length:127408

Class :character Class :character Class :character Class :character

Mode :character Mode :character Mode :character Mode :character

avgLength Experiment Sample BioSample

Min. : 87.0 Length:127408 Length:127408 Length:127408

1st Qu.:100.2 Class :character Class :character Class :character

Median :123.0 Mode :character Mode :character Mode :character

Mean :113.8

3rd Qu.:126.0

Max. :126.0

transcript ref_genome .abundant TMM

Length:127408 Length:127408 Mode:logical Min. :0.9512

Class :character Class :character TRUE:127408 1st Qu.:0.9706

Mode :character Mode :character Median :1.0052

Mean :1.0006

3rd Qu.:1.0257

Max. :1.0553

multiplier counts_scaled

Min. :1.026 Min. : 0.0

1st Qu.:1.230 1st Qu.: 95.4

Median :1.467 Median : 445.8

Mean :1.466 Mean : 1933.7

3rd Qu.:1.581 3rd Qu.: 1369.6

Max. :2.136 Max. :632885.3

41 Data frames and Data Wrangling

Bioinformatics Training and Education Program

What is the length of our data.frame? What are the dimensions?

scaled_counts is a tidy data frame. Let's take a moment to envision an untidy data frame that

contains the same data. Again, remember, there are infinite possibilities for messy data, but

here is one example.

#length returns the number of columns

length(scaled_counts)

[1] 18

#dimensions

dim(scaled_counts) #dim() returns the rows and columns

[1] 127408 18

Adding missing grouping variables: `sample`

c # view a snapshot of an untidy data frame

508

cell N61311

dex untrt

SampleName GSM1275862

Run / Experiment / Accession SRR1039508;SRX384345;SRS508568

TSPAN6 960.886417275434

DPM1 660.874752382368

SCYL3 367.938834302817

C1orf112 84.9089617621886

CFH 4600.65057814792

509

cell N61311

dex trt

SampleName GSM1275863

Run / Experiment / Accession SRR1039509;SRX384346;SRS508567

TSPAN6 716.779730254346

DPM1 823.976698841491

SCYL3 337.590453311757

C1orf112 87.9975115267612

42 Data frames and Data Wrangling

Bioinformatics Training and Education Program

CFH 5886.23354376281

512

cell N052611

dex untrt

SampleName GSM1275866

Run / Experiment / Accession SRR1039512;SRX384349;SRS508571

TSPAN6 1075.40953718585

DPM1 764.982041915709

SCYL3 323.977901809712

C1orf112 49.2742055984354

CFH 7609.16919953838

513

cell N052611

dex trt

SampleName GSM1275867

Run / Experiment / Accession SRR1039513;SRX384350;SRS508572

TSPAN6 871.667100344899

DPM1 779.800224573256

SCYL3 350.375991315107

C1orf112 74.7753640001752

CFH 9084.13850653557

516

cell N080611

dex untrt

SampleName GSM1275870

Run / Experiment / Accession SRR1039516;SRX384353;SRS508575

TSPAN6 1392.02747542151

DPM1 718.031746988071

SCYL3 299.689570719041

C1orf112 95.4113735350417

CFH 8221.28001960276

517

cell N080611

dex trt

SampleName GSM1275871

Run / Experiment / Accession SRR1039517;SRX384354;SRS508576

TSPAN6 1074.3148432507

DPM1 819.844851726182

SCYL3 339.635351591197

C1orf112 64.6435865566326

CFH 11314.6798247617

520

cell N061011

dex untrt

SampleName GSM1275874

Run / Experiment / Accession SRR1039520;SRX384357;SRS508579

TSPAN6 1212.77045557059

43 Data frames and Data Wrangling

Bioinformatics Training and Education Program

Data frame coercion and accessors

Notice that "sample" was treated as numeric, rather than as a character vector. If we intend to

work with this column, we will need to convert it or coerce it to a character vector.

We can access a column of our data frame using [], [[]], or using the $ (http://adv-

r.had.co.nz/Subsetting.html). Let's convert the "sample" column from an integer to a character

vector. This is known as coercion.

DPM1 656.786077886933

SCYL3 366.981189802531

C1orf112 119.702018991383

CFH 8152.33750393948

521

cell N061011

dex trt

SampleName GSM1275875

Run / Experiment / Accession SRR1039521;SRX384358;SRS508580

TSPAN6 868.672540272425

DPM1 771.478409892293

SCYL3 347.772747766408

C1orf112 91.1194972313732

CFH 12141.6730060805

#We can see that sample is being treated as numeric

is.numeric(scaled_counts$sample)

[1] TRUE

#let's convert it to a character vector

scaled_counts$sample<-as.character(scaled_counts$sample)

#check this

is.character(scaled_counts$sample)

[1] TRUE

#check this

is.numeric(scaled_counts$sample)

44 Data frames and Data Wrangling

Bioinformatics Training and Education Program

http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html

See other related functions (e.g., as.factor(),as.numeric()).

Be careful with data coercion. What happens if we change a character vector into a numeric?

Other data frame accessors worthy of mention:

Some helpful things to remember

When you explicitly coerce one data type into another (this is known as

explicit coercion), be careful to check the result. Ideally, you should try to see

if its possible to avoid steps in your analysis that force you to coerce.

R will sometimes coerce without you asking for it. This is called

(appropriately) implicit coercion. For example when we tried to create a

vector with multiple data types, R chose one type through implicit coercion.

[1] FALSE

#A warning is thrown and the entire column is filled with NA

head(as.numeric(scaled_counts$Sample))

Warning in head(as.numeric(scaled_counts$Sample)): NAs introduced by coercion

[1] NA NA NA NA NA NA

#Let's view the column names of this data frame

colnames(scaled_counts)

[1] "feature" "sample" "counts" "SampleName"

[5] "cell" "dex" "albut" "Run"

[9] "avgLength" "Experiment" "Sample" "BioSample"

[13] "transcript" "ref_genome" ".abundant" "TMM"

[17] "multiplier" "counts_scaled"

#Let's view the row names

#We are using head to avoid printing 127k rows

head(rownames(scaled_counts))

[1] "1" "2" "3" "4" "5" "6"

•

•

45 Data frames and Data Wrangling

Bioinformatics Training and Education Program

Check the structure (str()) of your data frames before working with them! ---

datacarpentry.org (https://datacarpentry.org/genomics-r-intro/05-dplyr/

index.html)

Let's rename the column "Sample" to "Accession"

Test your learning: Questions 1-2

Subsetting data frames

Subsetting a data frame is similar to subsetting a vector; we will use bracket notation [].

However, a data frame is two dimensional with both rows and columns, so we can specify either

one argument or two arguments (e.g., df[row,column]) depending. If you provide one argument,

columns will be assumed. This is because a data frame has characteristics of both a list and a

matrix. We will discuss matrices in a bit.

For now, let's focus on providing two arguments to subset. (Note when a df structure is

returned)

•

#if unsure of the index of the "Sample" column, you could use

which(colnames(scaled_counts)=="Sample")

#or you could get the indices in a data frame

data.frame(colnames(scaled_counts))

#Let's rename "Sample" to "Accession"

colnames(scaled_counts)[11]<-"Accession"

#let's recheck our column names

colnames(scaled_counts)

[1] "feature" "sample" "counts" "SampleName"

[5] "cell" "dex" "albut" "Run"

[9] "avgLength" "Experiment" "Accession" "BioSample"

[13] "transcript" "ref_genome" ".abundant" "TMM"

[17] "multiplier" "counts_scaled"

scaled_counts[2,4] #Returns the value in the 4th column and 2nd row

scaled_counts[2,] #Returns row two

scaled_counts[-1,] #returns a df without row 1

46 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
../Test_Your_Learning/Lesson2_TYL/

What happens when we provide a single argument?

Some tips to remember for subsetting:

Typically provide two values separated by commas: data.frame[row, column]

In cases where you are taking a continuous range of numbers use a colon

between the numbers (start:stop, inclusive)

For a non continuous set of numbers, pass a vector using c()

Index using the name of a column(s) by passing them as vectors using c() ---

datacarpentry.org (https://datacarpentry.org/genomics-r-intro/03-basics-

factors-dataframes/index.html)

Let's simplify our data by subsetting.

scaled_counts[1:4,1] #returns first four rows of column 1

#call names of columns directly

scaled_counts[1:10,c("sample","counts")]

#use comparison annotation

scaled_counts[scaled_counts$sample == "508",]

#notice the difference here

scaled_counts[,2] #returns column two

#treated similar to a matrix

#does not return a df if the output is a single column

scaled_counts[2] #returns column two

#treated similar to a list; maintains the df structure

#You can preserve the structure of the data frame while subsetting

use drop = F

scaled_counts[,2,drop=F]

•

•

•

•

#Let's keep sample, counts, scaled_counts, transcript, and dex.

#The dex column is the treatment (treated vs untreated)

#if you don't know the column indexes but you know the column names,

#you can call them directly

sscaled<-

 scaled_counts[

 c("sample","cell","dex","transcript","counts","counts_scaled")]

str(sscaled)

47 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html

Because we were working with a data frame, the object returned will be a data frame in most

cases. However, you can explicitly make sure this is true by using the data.frame() function.

Let's subset the data frame using indices this time.

Subsetting including simplifying vs preserving can get confusing. Here (http://adv-r.had.co.nz/

Subsetting.html) is a great chapter - though, a bit more advanced - that may clear things up if

you are confused.

Introducing Factors

At this point, you have seen the term "factor" pop up a few times.

Factors can be thought of as vectors which are specialized for categorical data.

Given R’s specialization for statistics, this make sense since categorial and

continuous variables are usually treated differently. Sometimes you may want to

have data treated as a factor, but in other cases, this may be undesirable. ---

datacarpentry.org (https://datacarpentry.org/genomics-r-intro/03-basics-factors-

dataframes/index.html)

Let's go ahead and coerce some of our character vectors to factors. "sample", "dex", "cell", and

"transcript" are categorical variables.

'data.frame': 127408 obs. of 6 variables:

$ sample : chr "508" "508" "508" "508" ...

$ cell : chr "N61311" "N61311" "N61311" "N61311" ...

$ dex : chr "untrt" "untrt" "untrt" "untrt" ...

$ transcript : chr "TSPAN6" "DPM1" "SCYL3" "C1orf112" ...

$ counts : int 679 467 260 60 3251 1433 519 394 172 2112 ...

$ counts_scaled: num 960.9 660.9 367.9 84.9 4600.7 ...

sscaled_b<-data.frame(scaled_counts[c(2,5,6,13,3,18)])

#are the two data frames the same? You could also use all.equal()

identical(sscaled,sscaled_b)

[1] TRUE

sscaled$sample<-as.factor(sscaled$sample)

sscaled$dex<-as.factor(sscaled$dex)

sscaled$transcript<-as.factor(sscaled$transcript)

sscaled$cell<-as.factor(sscaled$cell)

#note there is an easier solution using tidyverse functionality

48 Data frames and Data Wrangling

Bioinformatics Training and Education Program

http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
http://adv-r.had.co.nz/Subsetting.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html

We see that "sample" is a factor with 8 levels; cell is a factor with 4 levels, dex a factor with 2

levels, and transcript a factor with 14,575 levels. The levels are the different groups or

categories in those variables. R will organize the levels alphabetically by default.

For the sake of efficiency, R stores the content of a factor as a vector of integers,

with an integer assigned to each of the possible levels. ---datacarpentry.org

(https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/

index.html)

This explains the numbers following the level names in the str() output.

#Now let's look at the structure of our data frame

str(sscaled)

'data.frame': 127408 obs. of 6 variables:

$ sample : Factor w/ 8 levels "508","509","512",..: 1 1 1 1 1 1 1 1 1 1 ...

$ cell : Factor w/ 4 levels "N052611","N061011",..: 4 4 4 4 4 4 4 4 4 4 ...

$ dex : Factor w/ 2 levels "trt","untrt": 2 2 2 2 2 2 2 2 2 2 ...

$ transcript : Factor w/ 14575 levels "A1BG-AS1","A2M",..: 13065 3282 10793 1445 2179 4414 4553 7818 11940 7850 ...

$ counts : int 679 467 260 60 3251 1433 519 394 172 2112 ...

$ counts_scaled: num 960.9 660.9 367.9 84.9 4600.7 ...

#get a summary

#notice that counts of the factor levels are returned

summary(sscaled)

sample cell dex transcript

508 :15926 N052611:31852 trt :63704 ABHD17AP1: 16

509 :15926 N061011:31852 untrt:63704 ACBD6 : 16

512 :15926 N080611:31852 AGAP9 : 16

513 :15926 N61311 :31852 CBWD6 : 16

516 :15926 FAM106A : 16

517 :15926 (Other) :116648

(Other):31852 NA's : 10680

counts counts_scaled

Min. : 0 Min. : 0.0

1st Qu.: 66 1st Qu.: 95.4

Median : 310 Median : 445.8

Mean : 1376 Mean : 1933.7

3rd Qu.: 960 3rd Qu.: 1369.6

Max. :513766 Max. :632885.3

49 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html
https://datacarpentry.org/genomics-r-intro/03-basics-factors-dataframes/index.html

This also results in some interesting behavior during variable coercion from is.factor() to

is.numeric(). To coerce from a factor to a numeric, you have to first convert to a character

vector. Otherwise, the numbers that you want to be numeric (the factor level names) will be

returned as integers.

For example

Factors are necessary for plotting, and you can rename factors simply by manipulating the

levels. For example

#let's convert "sample" back to a numeric

head(as.numeric(sscaled$sample)) #notice the ones

[1] 1 1 1 1 1 1

#instead we need to do the following

head(as.numeric(as.character(sscaled$sample)))

[1] 508 508 508 508 508 508

#Let's rename the levels in the dex column

#first let's see the levels

levels(sscaled$dex)

[1] "trt" "untrt"

#notice the column order is alphabetical

plot(sscaled$dex)

50 Data frames and Data Wrangling

Bioinformatics Training and Education Program

To reorder the factor levels, we need to use factor() or fct_reorder() from tidyverse.

#Now, let's rename

#It is critical that the order is maintained

levels(sscaled$dex)<-c("treated","untreated")

levels(sscaled$dex) #We can see that the levels were modified

[1] "treated" "untreated"

#first, we can explicitly state the order

sscaled$dex<-factor(sscaled$dex, levels=c("untreated","treated"))

plot(sscaled$dex) #now the order has changed

51 Data frames and Data Wrangling

Bioinformatics Training and Education Program

We can do other types of ordering as well. For example, let's say we filtered out all

scaled_counts less than 10,000 and now we want to order our transcripts by transcripts found

with at least 10k counts in the greatest number of samples (present at greater than 10k counts

in more samples).

#let's get this filtered data set

#hopefully this notation seems familiar

transcript_f<-sscaled[sscaled$counts_scaled>10000,]

#Let's look at this using head

head(table(transcript_f$transcript),n=10)

A1BG-AS1 A2M A2M-AS1 A4GALT AAAS AACS AADAT AAGAB

0 7 0 0 0 0 0 0

AAK1 AAMDC

0 0

#We shouldn't really see zeros at this point.

#A transcript should be found in at least one sample.

#This is because the factor levels are maintained.

52 Data frames and Data Wrangling

Bioinformatics Training and Education Program

Using tidyverse functionality (library(forcats)) we can easily reorder our factor levels by

sorting along a different column using fct_reorder(). You should also look into

fct_relevel().

#Let's drop the factor levels

transcript_f<-droplevels(transcript_f)

#head again

head(table(transcript_f$transcript),n=10)

A2M ABCA1 ABI3BP ACTB ACTG1 ACTN1 ACTN4 ADAM33 ADAM9 ADAMTS1

7 6 4 8 8 8 8 3 8 7

#let's look at our current factor order

head(levels(transcript_f$transcript),n=10)

[1] "A2M" "ABCA1" "ABI3BP" "ACTB" "ACTG1" "ACTN1" "ACTN4"

[8] "ADAM33" "ADAM9" "ADAMTS1"

#let's reorder

ordered_factor_transcripts <- factor(transcript_f$transcript, levels = names(sort(table(transcript_f$transcript),decreasing=TRUE)))

#Let's compare the output of sort to our new factor levels

head(sort(table(transcript_f$transcript),decreasing=TRUE), n=10)

ACTB ACTG1 ACTN1 ACTN4 ADAM9 ADH1B ADM AHNAK AKAP12 AKR1C1

8 8 8 8 8 8 8 8 8 8

head(levels(ordered_factor_transcripts), n=10)

[1] "ACTB" "ACTG1" "ACTN1" "ACTN4" "ADAM9" "ADH1B" "ADM" "AHNAK"

[9] "AKAP12" "AKR1C1"

53 Data frames and Data Wrangling

Bioinformatics Training and Education Program

#Let's filter our data to only include 4 transcripts of interest

keep_t<-c("CPD","EXT1","MCL1","LASP1")

interesting_trnsc<-sscaled[sscaled$transcript %in% keep_t,]

interesting_trnsc<-droplevels(interesting_trnsc)

#Look at a basic boxplot of the scaled_counts of these transcripts

boxplot(counts_scaled ~ transcript, data=interesting_trnsc)

#print levels

levels(interesting_trnsc$transcript)

[1] "CPD" "EXT1" "LASP1" "MCL1"

54 Data frames and Data Wrangling

Bioinformatics Training and Education Program

Test your learning: Questions 3-4

Find and replace in R

There are infinite uses for find and replace functionality, and like most topics in R, there are

multiple ways to search for and replace values in a data frame.

You could use bracket sub-setting. Let's say we noticed a typo in a gene annotation in our

interesting_trnsc data frame. We want to search for the "MCL1" gene and replace it with "MCL2".

We could do the following:

#Reorder the transcript factor levels by the maximum of counts_scaled

interesting_trnsc$transcript<-

 fct_reorder(interesting_trnsc$transcript,

 interesting_trnsc$counts,max)

#plot

boxplot(counts_scaled ~ transcript, data=interesting_trnsc)

#The column interesting_trnsc$transcript is a vector of gene names

#in the interesting_trnsc data frame.

55 Data frames and Data Wrangling

Bioinformatics Training and Education Program

../Test_Your_Learning/Lesson2_TYL/

There are also a number of functions that have similar functionality. Check out sub() and

gsub(). According to R documentation, "sub and gsub perform replacement of the first and all

matches respectively". gsub() can only work on a single vector for replacement in a data

frame. For global replacement across an entire data frame, you will have to get more creative if

using gsub(). We will not be covering the apply functions, but they are useful and can often

#We can subset like we do with vectors

interesting_trnsc$transcript[interesting_trnsc$transcript=="MCL1"]

[1] MCL1 MCL1 MCL1 MCL1 MCL1 MCL1 MCL1 MCL1

Levels: EXT1 MCL1 LASP1 CPD

#we found the gene of interest; now, let's replace with MCL2

interesting_trnsc$transcript[

 interesting_trnsc$transcript=="MCL1"]<-"MCL2"

Warning in `[<-.factor`(`*tmp*`, interesting_trnsc$transcript == "MCL1", :

invalid factor level, NA generated

#Ah, we received a warning and the values became NAs.

#This is because transcript is a factor with set levels.

#let's replace those NAs with our original factor level MCL1

interesting_trnsc$transcript[

 is.na(interesting_trnsc$transcript)]<-"MCL1"

#To change the MCL1 value, we can simply change the factor level

levels(interesting_trnsc$transcript)[2] <-"MCL2"

#Alternatively, we could change this factor to a character vector.

interesting_trnsc$transcript<-

 as.character(interesting_trnsc$transcript)

#Let's change MCL2 back to MCL1

interesting_trnsc$transcript[interesting_trnsc$transcript=="MCL2"]<-

 "MCL1"

#if this typo was present in multiple columns we could use

#just creating the same column elsewhere to test

interesting_trnsc$new_transcripts<-interesting_trnsc$transcript

interesting_trnsc[interesting_trnsc=="MCL1"]<-"MCL2"

#Be careful if these columns are factors

56 Data frames and Data Wrangling

Bioinformatics Training and Education Program

be used in the place of a complicated for loop. Here (https://ademos.people.uic.edu/

Chapter4.html) is a nice tutorial for those that are interested. The advantage of using functions

related to pattern matching and replacement (e.g., gsub() or sub()) is that you can use

regular expressions (https://cran.r-project.org/web/packages/stringr/vignettes/regular-

expressions.html) to match complicated patterns.

Save our data frame to a file

Perhaps we want to use our interesting_trnsc df in another program. Let's save this to a file.

Introduction to data matrices

Another important data structure in R is the data matrix. Data frames and data matrices are

similar in that both are tabular in nature and are defined by dimensions (ie. rows (m) and

columns (n), commonly denoted m x n). Note that a vector can be viewed as a 1 dimensional

matrix.

Elements in a matrix and a data frame can be referenced by using their row and column indices

(for example, a[1,1] references the element in row 1 and column 1).

However, the primary difference between a df and a matrix is that a matrix only contains values

of a single type.

Below, we create the object a1, a 3 row by 4 column matrix.

Using the typeof() and class() command, we see that the elements in a1 are double and a1 a

matrix, respectively.

write.table(interesting_trnsc,

 file = "interesting_trnsc.txt",

 quote=FALSE,row.names=FALSE,sep="\t")

#if you don't know what these arguments mean,

#use ?write.table to get help.

a1 <- matrix(c(3,4,2,4,6,3,8,1,7,5,3,2), ncol=4)

a1

[,1] [,2] [,3] [,4]

[1,] 3 4 8 5

[2,] 4 6 1 3

[3,] 2 3 7 2

57 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://ademos.people.uic.edu/Chapter4.html
https://ademos.people.uic.edu/Chapter4.html
https://ademos.people.uic.edu/Chapter4.html
https://ademos.people.uic.edu/Chapter4.html
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html
https://cran.r-project.org/web/packages/stringr/vignettes/regular-expressions.html

Earlier, we mentioned that elements in a matrix can be referenced by their row and column

number. Below, we extract the element in the 3rd row and 4th column of a1 (which is 2)

We can assign column and row names to a matrix.

But, we cannot reference columns using $.

We can create matrices mixed with words and numbers (see a2).

typeof(a1)

[1] "double"

class(a1)

[1] "matrix" "array"

a1[3,4] ## should return 2

[1] 2

colnames(a1) <- c("control1","control2","tumor1","tumor2")

rownames(a1) <- c("ADA","AMPD2","HPRT")

a1

control1 control2 tumor1 tumor2

ADA 3 4 8 5

AMPD2 4 6 1 3

HPRT 2 3 7 2

a1$control1

Error in a1$control1: $ operator is invalid for atomic vectors

a2 <- matrix(c("apples","pears","oranges",50,25,75), ncol=2)

58 Data frames and Data Wrangling

Bioinformatics Training and Education Program

But, R will coerce all of the elements to character.

We can also perform mathematical operations on matrices.

Below we multiply every element in a1 by a3 and store in a4. Note, we are still left with a 3 by 4

matrix except the values have been multiplied by the value assigned to a3 (5).

a2

[,1] [,2]

[1,] "apples" "50"

[2,] "pears" "25"

[3,] "oranges" "75"

typeof(a2)

[1] "character"

typeof(a2[,2])

[1] "character"

class(a2)

[1] "matrix" "array"

a3 <- 5

a3

[1] 5

a4 <- a1*a3

a1

59 Data frames and Data Wrangling

Bioinformatics Training and Education Program

Let's compare back to a data frame. Similar to a matrix, a data frame is rectangular table of

elements.

Note: This is not a tidy data frame.

Using typeof() and class(), we see that the data frame a13 from above is a list and a

data.frame, respectively. With data frames, we are able to use $ to reference a particular

column and that the corresponding data type in each column can be heterogeneous (ie, we

have characters in column labeled fruit and double in column labeled hyvee).

control1 control2 tumor1 tumor2

ADA 3 4 8 5

AMPD2 4 6 1 3

HPRT 2 3 7 2

a4

control1 control2 tumor1 tumor2

ADA 15 20 40 25

AMPD2 20 30 5 15

HPRT 10 15 35 10

a7 <- c("fruit", "hyvee", "publix", "kroger", "safeway")

a8 <- c("apples", "oranges", "bananas", "pears")

a9 <- c(50,25,75,30)

a10 <- c(25,75,75,60)

a11 <- c(35,80,25,15)

a12 <- c(45,45,35,55)

a13 <- data.frame(a8,a9,a10,a11,a12)

colnames(a13) <- a7

a13

fruit hyvee publix kroger safeway

1 apples 50 25 35 45

2 oranges 25 75 80 45

3 bananas 75 75 25 35

4 pears 30 60 15 55

typeof(a13)

60 Data frames and Data Wrangling

Bioinformatics Training and Education Program

Some plot functions such as barplot that comes with R accepts matrices as input. Note the error

returned when trying to create a barplot using values from columns 2 through 5 in the data

frame a13.

To circumvent this error, use as.matrix().

[1] "list"

class(a13)

[1] "data.frame"

typeof(a13$fruit)

[1] "character"

typeof(a13$hyvee)

[1] "double"

barplot(a13[,2:5])

Error in barplot.default(a13[, 2:5]): 'height' must be a vector or a matrix

barplot(as.matrix(a13[,2:5]),

 col=c("red","orange","yellow","green"), ylab="number", ylim=c(0,300),cex.axis=1.35,cex.names=1.35,cex.lab=1.4,

 legend=as.vector(a13[,1]))

61 Data frames and Data Wrangling

Bioinformatics Training and Education Program

On the other, we can use data frame as input in the ggplot2 package. Let's use the same data

frame from above (a13)

tidyr::pivot_longer(a13,cols=2:5,

 names_to="store",values_to="quantity") %>%

 ggplot2::ggplot(aes(x=factor(

 store, levels=c("hyvee","publix","kroger","safeway")), y=quantity,

 fill=factor(fruit,

 levels=c("pears","bananas","oranges","apples"))))+

 geom_bar(stat="identity",color="black")+

 scale_fill_manual(values=

 rev(c("red","orange","yellow","green")),

 name=NULL) +

 scale_y_continuous(expand = c(0, 0),limits=c(0,300),

 breaks=seq(0,300, by=50))+

theme_classic()+

 theme(axis.title.x =element_blank(),

 legend.box.background = element_rect(colour = "black"),

 legend.position = c(.9, .8))

62 Data frames and Data Wrangling

Bioinformatics Training and Education Program

In conclusion, matrix and data frame share similarities but have differences.

comparisontab<-data.frame(Characteristic=

 c("is rectangular data table",

 "can perform math operations",

 "needs homogenous data type",

 "can have heterogeneous data type",

 "can reference using row and column number",

 "can reference column using $",

 "can use for plotting"),

 Matrix=c("yes", "yes", "yes", "no",

 "yes", "no", "yes"),

 Data.frame=c("yes", "yes", "no",

 "yes", "yes", "yes", "yes"))

comparisontab

Characteristic Matrix Data.frame

1 is rectangular data table yes yes

2 can perform math operations yes yes

3 needs homogenous data type yes no

4 can have heterogeneous data type no yes

5 can reference using row and column number yes yes

63 Data frames and Data Wrangling

Bioinformatics Training and Education Program

Data wrangling with tidyverse (40 minutes)

Objectives

Wrangle data using tidyverse functionality (i.e., dplyr). To this end, you should understand:

1. how to use common dplyr functions (e.g., select(), group_by(), arrange(),

mutate(), summarize(), and filter())

2. how to employ the pipe (%>%) operator to link functions

3. how to perform more complicated wrangling using the split, apply, combine concept

While bracket notation is useful, it is not always the most readable or easy to employ, especially

for beginners. This is where dplyr comes in. The dplyr package in the tidyverse world

simplifies data wrangling with easy to employ and easy to understand functions specific for

data manipulation in data frames.

The package dplyr is a fairly new (2014) package that tries to provide easy tools for

the most common data manipulation tasks. It was built to work directly with data

frames. The thinking behind it was largely inspired by the package plyr which has

been in use for some time but suffered from being slow in some cases. dplyr

addresses this by porting much of the computation to C++. An additional feature is

the ability to work with data stored directly in an external database. The benefits of

doing this are that the data can be managed natively in a relational database,

queries can be conducted on that database, and only the results of the query

returned. This addresses a common problem with R in that all operations are

conducted in memory and thus the amount of data you can work with is limited by

available memory. The database connections essentially remove that limitation in

that you can have a database that is over 100s of GB, conduct queries on it directly

and pull back just what you need for analysis in R. --- datacarpentry.com (https://

datacarpentry.org/genomics-r-intro/05-dplyr/index.html)

We do not need to load the dplyr package, as it is included in library(tidyverse), which

we have already installed and loaded. However, if you need to install and load on your local

machine you would use the following:

Let's read in some more data and take a look

6 can reference column using $ no yes

7 can use for plotting yes yes

install.packages("dplyr") ## install

library("dplyr")

#let's use our differential expression results

dexp<-readRDS("./data/diffexp_results_edger_airways.rds")

64 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html

Note: We will also be returning to our sscaled data.

#We've already learned str()

#but there is a tidyverse equivalent, glimpse()

str(dexp, give.attr=FALSE)

tibble [15,926 × 10] (S3: tbl_df/tbl/data.frame)

$ feature : chr [1:15926] "ENSG00000000003" "ENSG00000000419" "ENSG00000000457" "ENSG00000000460" ...

$ albut : Factor w/ 1 level "untrt": 1 1 1 1 1 1 1 1 1 1 ...

$ transcript: chr [1:15926] "TSPAN6" "DPM1" "SCYL3" "C1orf112" ...

$ ref_genome: chr [1:15926] "hg38" "hg38" "hg38" "hg38" ...

$.abundant : logi [1:15926] TRUE TRUE TRUE TRUE TRUE TRUE ...

$ logFC : num [1:15926] -0.3901 0.1978 0.0292 -0.1244 0.4173 ...

$ logCPM : num [1:15926] 5.06 4.61 3.48 1.47 8.09 ...

$ F : num [1:15926] 32.8495 6.9035 0.0969 0.3772 29.339 ...

$ PValue : num [1:15926] 0.000312 0.028062 0.762913 0.554696 0.000463 ...

$ FDR : num [1:15926] 0.00283 0.07701 0.84425 0.68233 0.00376 ...

glimpse(dexp)

Rows: 15,926

Columns: 10

$ feature <chr> "ENSG00000000003", "ENSG00000000419", "ENSG00000000457", "E…

$ albut <fct> untrt, untrt, untrt, untrt, untrt, untrt, untrt, untrt, unt…

$ transcript <chr> "TSPAN6", "DPM1", "SCYL3", "C1orf112", "CFH", "FUCA2", "GCL…

$ ref_genome <chr> "hg38", "hg38", "hg38", "hg38", "hg38", "hg38", "hg38", "hg…

$.abundant <lgl> TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE,…

$ logFC <dbl> -0.390100222, 0.197802179, 0.029160865, -0.124382022, 0.417…

$ logCPM <dbl> 5.059704, 4.611483, 3.482462, 1.473375, 8.089146, 5.909668,…

$ F <dbl> 3.284948e+01, 6.903534e+00, 9.685073e-02, 3.772134e-01, 2.9…

$ PValue <dbl> 0.0003117656, 0.0280616149, 0.7629129276, 0.5546956332, 0.0…

$ FDR <dbl> 0.002831504, 0.077013489, 0.844247837, 0.682326613, 0.00376…

#we can see that glimpse is a little more succinct and clean

#also str() will show attributes.

#These were ignored above using give.attr=FALSE to get around package

#dependencies

65 Data frames and Data Wrangling

Bioinformatics Training and Education Program

Subsetting with dplyr

How can we select only columns of interest and rows of interest? We can use dplyr's select()

and filter().

We can also select all columns, leaving out ones that do not interest us using a - sign. This is

helpful if the columns to keep far outweigh those to exclude.

For readability we should move the transcript column to the front

We can also include helper functions such as starts_with() and ends_with()

#select the gene / transcript, logFC, and FDR corrected p-value

#first argument is the df followed by columns to select

dexp_s<-select(dexp, transcript, logFC, FDR)

df_exp<-select(dexp, -feature)

#you can reorder columns and call a range of columns using select().

df_exp<-select(df_exp, transcript:FDR,albut)

#Note: this also would have excluded the feature column

select(df_exp, transcript, starts_with("log"), FDR)

A tibble: 15,926 × 4

transcript logFC logCPM FDR

<chr> <dbl> <dbl> <dbl>

1 TSPAN6 -0.390 5.06 0.00283

2 DPM1 0.198 4.61 0.0770

3 SCYL3 0.0292 3.48 0.844

4 C1orf112 -0.124 1.47 0.682

5 CFH 0.417 8.09 0.00376

6 FUCA2 -0.250 5.91 0.0186

7 GCLC -0.0581 4.84 0.794

8 NFYA -0.509 4.13 0.00126

9 STPG1 -0.136 3.12 0.478

10 NIPAL3 -0.0500 7.04 0.695

… with 15,916 more rows

66 Data frames and Data Wrangling

Bioinformatics Training and Education Program

Test your learning

Now let's filter the rows based on a condition. Let's look at only the treated samples in

scaled_counts using the function filter().

We can also filter using %in%

1. From the `interesting_trnsc` data frame select the following

columns and save to an object: sample, dex, transcript, counts_scaled.

2. From the 'interesting_trnsc` data frame select all columns except

new_transcripts and counts.

filter(sscaled, dex == "treated") #we've seen == notation before

#filter for two cell lines

f_sscale<-filter(sscaled,cell %in% c("N061011", "N052611"))

#let's check that this worked, dropping unusued levels

levels(droplevels(f_sscale$cell))

[1] "N052611" "N061011"

#let's filter by keep_t from above

filter(f_sscale,transcript %in% keep_t)

sample cell dex transcript counts counts_scaled

1 512 N052611 untreated LASP1 7831 9646.658

2 512 N052611 untreated CPD 8270 10187.442

3 512 N052611 untreated MCL1 5170 6368.691

4 512 N052611 untreated EXT1 8503 10474.464

5 513 N052611 treated LASP1 5809 12410.574

6 513 N052611 treated CPD 7638 16318.121

7 513 N052611 treated MCL1 5153 11009.070

8 513 N052611 treated EXT1 2317 4950.129

9 520 N061011 untreated LASP1 5766 9081.603

10 520 N061011 untreated CPD 7067 11130.713

11 520 N061011 untreated MCL1 4410 6945.867

12 520 N061011 untreated EXT1 6925 10907.059

13 521 N061011 treated LASP1 7825 11883.501

14 521 N061011 treated CPD 10091 15324.781

67 Data frames and Data Wrangling

Bioinformatics Training and Education Program

And we can filter using numeric columns. There are lots of options for filtering so explore the

functionality a bit when you get a chance.

Test your learning

Introducing the pipe

Often we will apply multiple functions to wrangle a data frame into the state that we need it. For

example, maybe you want to select and filter. What are our options? We could run one step

after another, saving an object for each step, or we could nest a function within a function, but

these can affect code readability and clutter our work space, making it difficult to follow what

we or someone else did.

15 521 N061011 treated MCL1 7338 11143.915

16 521 N061011 treated EXT1 3242 4923.490

#filter by keep_t from above

#get only results from counts greater than or equal to 20k

#use head to get only the first handful of rows

head(filter(f_sscale,counts_scaled >= 20000))

sample cell dex transcript counts counts_scaled

1 512 N052611 untreated CSDE1 19863 24468.34

2 512 N052611 untreated MRC2 23978 29537.42

3 512 N052611 untreated DCN 422752 520769.22

4 512 N052611 untreated VIM 37558 46266.02

5 512 N052611 untreated CD44 25453 31354.41

6 512 N052611 untreated VCL 17309 21322.18

#use `|` operator

#look at only results with named genes (not NAs)

#and those with a log fold change greater than 2

#and either a p-value or an FDR corrected p_value < or = to 0.01

#The comma acts as &

sig_annot_transcripts<-

 filter(df_exp, !is.na(transcript),

 abs(logFC) > 2, (PValue | FDR <= 0.01))

Filter the interesting_trnsc data frame to only include the following

genes: MCL2 and EXT1.

68 Data frames and Data Wrangling

Bioinformatics Training and Education Program

For example,

Let's explore how piping streamlines this. Piping (using %>%) allows you to employ multiple

functions consecutively, while improving readability. The output of one function is passed

directly to another without storing the intermediate steps as objects. You can pipe from the

beginning (reading in the data) all the way to plotting without storing the data or intermediate

objects, if you want. Pipes in R come from the magrittr package, which is a dependency of

dplyr.

To pipe, we have to first call the data and then pipe it into a function. The output of each step is

then piped into the next step.

Let's see how this works

Notice that the data argument has been dropped from select() and filter(). This is

because the pipe passes the input from the left to the right. The %>% must be at the end of each

line.

Piping from the beginning:

#Run one step at a time with intermediate objects.

#We've done this a few times above

#select gene, logFC, FDR

dexp_s<-select(dexp, transcript, logFC, FDR)

#Now filter for only the genes "TSPAN6" and DPM1

#Note: we could have used %in%

tspanDpm<- filter(dexp_s, transcript == "TSPAN6" | transcript=="DPM1")

#Nested code example

tspanDpm<- filter(select(dexp, c(transcript, logFC, FDR)),

 transcript == "TSPAN6" | transcript=="DPM1")

tspanDpm <- dexp %>% #call the data and pipe to select()

 select(transcript, logFC, FDR) %>% #select columns of interest

 filter(transcript == "TSPAN6" | transcript=="DPM1") #filter

69 Data frames and Data Wrangling

Bioinformatics Training and Education Program

The readr functions(e.g., read_csv()) for reading in data are fairly efficient, so those could be

used to speed this up a bit.

The dplyr functions by themselves are somewhat simple, but by combining them

into linear workflows with the pipe, we can accomplish more complex manipulations

of data frames. ---datacarpentry.org (https://datacarpentry.org/genomics-r-intro/05-

dplyr/index.html)

Test your learning

readRDS("./data/diffexp_results_edger_airways.rds") %>% #read data

 select(transcript, logFC, FDR) %>% #select columns of interest

 filter(transcript == "TSPAN6" | transcript=="DPM1") %>% #filter

 ggplot(aes(x=transcript,y=logFC,fill=FDR)) + #plot

 geom_bar(stat = "identity") +

 theme_classic() +

 geom_hline(yintercept=0, linetype="dashed", color = "black")

Using what you have learned about `select()` and `filter()`, create a subsetted data frame from scaled_counts that only includes the columns 'sample', 'cell', 'dex', 'transcript', and 'counts_scaled' and only rows that include the treatment "untrt" and the transcripts "ACTN1" and "ANAPC4"?

70 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html

Mutate and transmute

Other useful data manipulation functions from dplyr include mutate() and transmute().

These functions allow you to create a new variable from existing variables. Perhaps you want to

know the ratio of two columns or convert the units of a variable. That can be done with

mutate().

mutate() adds new variables and preserves existing ones; transmute() adds new

variables and drops existing ones. New variables overwrite existing variables of the

same name. --- dplyr.tidyverse.org (https://dplyr.tidyverse.org/reference/

mutate.html)

Let's create a column in our original differential expression data frame denoting significant

transcripts (those with an FDR corrected pvalue less than 0.05 and a log fold change greater

than or equal to 2).

We can also use mutate to coerce variables. Remember those one liners we used in the factor

section to coerce our character vectors to factors?

dexp_sigtrnsc<-dexp %>% mutate(Significant= FDR<0.05 & abs(logFC) >=2)

#This will be useful to make a volcano plot in lesson 3

#get the original data frame with character vectors

ex_coerce<-scaled_counts %>% select(sample,cell,dex,transcript,counts,counts_scaled)

glimpse(ex_coerce)

Rows: 127,408

Columns: 6

$ sample <chr> "508", "508", "508", "508", "508", "508", "508", "508", …

$ cell <chr> "N61311", "N61311", "N61311", "N61311", "N61311", "N6131…

$ dex <chr> "untrt", "untrt", "untrt", "untrt", "untrt", "untrt", "u…

$ transcript <chr> "TSPAN6", "DPM1", "SCYL3", "C1orf112", "CFH", "FUCA2", "…

$ counts <int> 679, 467, 260, 60, 3251, 1433, 519, 394, 172, 2112, 524,…

$ counts_scaled <dbl> 960.88642, 660.87475, 367.93883, 84.90896, 4600.65058, 2…

#use mutate_if()

ex_coerce<-ex_coerce %>% mutate_if(is.character,as.factor)

glimpse(ex_coerce)

Rows: 127,408

Columns: 6

71 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate.html
https://dplyr.tidyverse.org/reference/mutate.html

Test your learning

Arrange, group_by, summarize

There is an approach to data analysis known as "split-apply-combine", in which the data is split

into smaller components, some type of analysis is applied to each component, and the results

are combined. The dplyr functions including group_by() and summarize() are key players

in this type of workflow. The function arrange() may also be handy.

group_by() allows us to group a data frame by a categorical variable so that a given

operation can be performed per group.

Let's get the top five transcripts with the greatest median scaled counts by treatment

$ sample <fct> 508, 508, 508, 508, 508, 508, 508, 508, 508, 508, 508, 5…

$ cell <fct> N61311, N61311, N61311, N61311, N61311, N61311, N61311, …

$ dex <fct> untrt, untrt, untrt, untrt, untrt, untrt, untrt, untrt, …

$ transcript <fct> TSPAN6, DPM1, SCYL3, C1orf112, CFH, FUCA2, GCLC, NFYA, S…

$ counts <int> 679, 467, 260, 60, 3251, 1433, 519, 394, 172, 2112, 524,…

$ counts_scaled <dbl> 960.88642, 660.87475, 367.93883, 84.90896, 4600.65058, 2…

Using mutate apply a base-10 logarithmic transformation to the

counts_scaled column. Save the resulting data frame to an object

called log10counts. Hint: see the function log10().

scaled_counts %>% #Call the data

 group_by(dex,transcript) %>% # group_by treatment and transcript

 #(transcript nested within treatment)

 summarize(median_counts=median(counts_scaled)) %>% #for each group

 #calculate the median value of scaled counts

 arrange(desc(median_counts),.by_group = TRUE) %>%

 #arrange in descending order

 slice_head(n=5) #return the top 5 values for each group

`summarise()` has grouped output by 'dex'. You can override using the `.groups` argument.

A tibble: 10 × 3

Groups: dex [2]

dex transcript median_counts

<chr> <chr> <dbl>

1 trt FN1 486430.

72 Data frames and Data Wrangling

Bioinformatics Training and Education Program

How many rows per sample are in the scaled_counts data frame?

2 trt DCN 389306.

3 trt MT-CO1 369456.

4 trt EEF1A1 346869.

5 trt QSOX1 284100.

6 untrt FN1 456360.

7 untrt DCN 439781.

8 untrt EEF1A1 404269.

9 untrt MT-CO1 346974.

10 untrt COL1A2 331816.

#can skip arrange and use slice_max

scaled_counts %>%

 group_by(dex,transcript) %>%

 summarize(median_counts=median(counts_scaled)) %>%

 slice_max(n=5, order_by=median_counts) #notice use of slice_max

`summarise()` has grouped output by 'dex'. You can override using the `.groups` argument.

A tibble: 10 × 3

Groups: dex [2]

dex transcript median_counts

<chr> <chr> <dbl>

1 trt FN1 486430.

2 trt DCN 389306.

3 trt MT-CO1 369456.

4 trt EEF1A1 346869.

5 trt QSOX1 284100.

6 untrt FN1 456360.

7 untrt DCN 439781.

8 untrt EEF1A1 404269.

9 untrt MT-CO1 346974.

10 untrt COL1A2 331816.

scaled_counts %>%

 group_by(dex, sample) %>%

 summarize(n=n()) #there are multiple functions that can be used here

`summarise()` has grouped output by 'dex'. You can override using the `.groups` argument.

73 Data frames and Data Wrangling

Bioinformatics Training and Education Program

Note: By default, all [built in] R functions operating on vectors that contain missing

data will return NA. It’s a way to make sure that users know they have missing data,

and make a conscious decision on how to deal with it. When dealing with simple

statistics like the mean, the easiest way to ignore NA (the missing data) is to use

na.rm = TRUE (rm stands for remove). ---datacarpentry.org (https://

datacarpentry.org/genomics-r-intro/05-dplyr/index.html)

Let's see this in practice

A tibble: 8 × 3

Groups: dex [2]

dex sample n

<chr> <chr> <int>

1 trt 509 15926

2 trt 513 15926

3 trt 517 15926

4 trt 521 15926

5 untrt 508 15926

6 untrt 512 15926

7 untrt 516 15926

8 untrt 520 15926

#See tally() and count()

set.seed(138) #This is used to get the same result

#with a pseudorandom number generator like sample()

#make mock data frame

fun_df<-data.frame(genes=rep(c("A","B","C","D"), each=3),

 counts=sample(1:500,12,TRUE))

#Assign NAs if the value is less than 100. This is arbitrary.

fun_df$counts[fun_df$counts<100]<-NA

fun_df #view

genes counts

1 A NA

2 A 214

3 A NA

4 B 352

5 B 256

6 B NA

74 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html
https://datacarpentry.org/genomics-r-intro/05-dplyr/index.html

7 C 400

8 C 381

9 C 250

10 D 278

11 D NA

12 D 169

#We should get NAs returned for some of our genes

fun_df %>%

 group_by(genes) %>%

 summarize(

 mean_count = mean(counts),

 median_count = median(counts),

 min_count = min(counts),

 max_count = max(counts))

A tibble: 4 × 5

genes mean_count median_count min_count max_count

<chr> <dbl> <int> <int> <int>

1 A NA NA NA NA

2 B NA NA NA NA

3 C 344. 381 250 400

4 D NA NA NA NA

#Now let's use na.rm

fun_df %>%

 group_by(genes) %>%

 summarize(

 mean_count = mean(counts, na.rm=TRUE),

 median_count = median(counts, na.rm=TRUE),

 min_count = min(counts, na.rm=TRUE),

 max_count = max(counts, na.rm=TRUE))

A tibble: 4 × 5

genes mean_count median_count min_count max_count

<chr> <dbl> <dbl> <int> <int>

1 A 214 214 214 214

2 B 304 304 256 352

3 C 344. 381 250 400

4 D 224. 224. 169 278

75 Data frames and Data Wrangling

Bioinformatics Training and Education Program

Test your learning

Challenge questions

Data Reshaping

Tidy data implies that we have one observation per row and one variable per column. This

generally means data is in a long format. If data is in a wide format, data related to the same

measurement is distributed in different columns. This at times will mean the data looks more like

a data matrix; though, it may not necessarily be a matrix.

Let's look back at the grocery data frame introduced in the matrix section.

Formatted here, this data is in a wide format. We can see an initial column with fruit (i.e., apples,

oranges, bananas, pears) followed by four columns containing integer data related to grocery

stores. These columns (hyvee, publix, kroger, and safeway) all hold data of the same type,

collected in the same way. As mentioned, this is not tidy data.

This data can easily be converted to long / tidy format using pivot_longer, as we did before.

Create a data frame summarizing the mean counts_scaled by sample from

the scaled_counts data frame.

1. Using the differential expression results, create a data frame with

the top five differentially expressed genes. Top genes in this case

will have the smallest FDR corrected p-value and an absolute value of

the log fold change greater than 2.

2. Create a data frame containing the median of the normalized counts

(counts_scaled) for each of our top transcripts by treatment (dex).

a13 #calling our grocery data

fruit hyvee publix kroger safeway

1 apples 50 25 35 45

2 oranges 25 75 80 45

3 bananas 75 75 25 35

4 pears 30 60 15 55

76 Data frames and Data Wrangling

Bioinformatics Training and Education Program

We often receive data in this wide format. For example, you may be given RNAseq data from a

colleague with the first column being sampleIDs and all additional columns being genes. The

data frame itself holds count data.

For example:

pivot_longer(a13,cols=2:5,names_to="store",values_to="quantity")

A tibble: 16 × 3

fruit store quantity

<chr> <chr> <dbl>

1 apples hyvee 50

2 apples publix 25

3 apples kroger 35

4 apples safeway 45

5 oranges hyvee 25

6 oranges publix 75

7 oranges kroger 80

8 oranges safeway 45

9 bananas hyvee 75

10 bananas publix 75

11 bananas kroger 25

12 bananas safeway 35

13 pears hyvee 30

14 pears publix 60

15 pears kroger 15

16 pears safeway 55

#take a look at fun_df again;

#we see genes in one column and transcripts in another.

fun_df

genes counts

1 A NA

2 A 214

3 A NA

4 B 352

5 B 256

6 B NA

7 C 400

8 C 381

9 C 250

10 D 278

77 Data frames and Data Wrangling

Bioinformatics Training and Education Program

There are other reasons you may be interested in using pivot_wider or pivot_longer. In my

experience, most uses revolve around plotting criteria. For example, you may want to plot two

different but related measurements on the same plot. You could pivot_longer so that those two

measurments are now in the same column.

Let's see how this might work with our scaled_counts data. We want to plot both "counts" and

"counts_scaled" together in a density plot to understand the distribution of the data. Did scaling

the counts improve the distribution?

11 D NA

12 D 169

#let's add a sample column and overwrite fun_df

#this data is in long format

fun_df<-data.frame(fun_df, sampleid=rep(c("A1","B1","C1"),4))

#let's convert to wide format using pivot_wider

fun_df_w<-fun_df %>%

 pivot_wider(sampleid,names_from=genes,values_from=counts)

fun_df_w

A tibble: 3 × 5

sampleid A B C D

<chr> <int> <int> <int> <int>

1 A1 NA 352 400 278

2 B1 214 256 381 NA

3 C1 NA NA 250 169

#convert to matrix

fun_mat<-fun_df_w %>% column_to_rownames("sampleid") %>%

 as.matrix(rownames.force=TRUE)

fun_mat

A B C D

A1 NA 352 400 278

B1 214 256 381 NA

C1 NA NA 250 169

#Now, we can easily apply functions that require data matrices.

78 Data frames and Data Wrangling

Bioinformatics Training and Education Program

#put counts and counts_scaled into a column named source

#with their values in a column named abundance

scounts_long<- scaled_counts %>% #getting the data

 pivot_longer(cols = c("counts", "counts_scaled"),

 names_to = "source", values_to = "abundance") #pivot

head(scounts_long)

A tibble: 6 × 18

feature sample SampleName cell dex albut Run avgLength Experiment

<chr> <chr> <chr> <chr> <chr> <chr> <chr> <int> <chr>

1 ENSG00000000003 508 GSM1275862 N613… untrt untrt SRR1… 126 SRX384345

2 ENSG00000000003 508 GSM1275862 N613… untrt untrt SRR1… 126 SRX384345

3 ENSG00000000419 508 GSM1275862 N613… untrt untrt SRR1… 126 SRX384345

4 ENSG00000000419 508 GSM1275862 N613… untrt untrt SRR1… 126 SRX384345

5 ENSG00000000457 508 GSM1275862 N613… untrt untrt SRR1… 126 SRX384345

6 ENSG00000000457 508 GSM1275862 N613… untrt untrt SRR1… 126 SRX384345

… with 9 more variables: Accession <chr>, BioSample <chr>, transcript <chr>,

ref_genome <chr>, .abundant <lgl>, TMM <dbl>, multiplier <dbl>,

source <chr>, abundance <dbl>

#PLot using ggplot2; It's not important to understand this code here.

#Lesson 3 will cover ggplot2.

ggplot(data=scounts_long, aes(x = abundance + 1, color = SampleName))+

 geom_density() +

 facet_wrap(~source) +

 ggplot2::scale_x_log10() +

 theme_bw()+

 ylab("Density")+

 xlab(expression('log'[10]*'Abundance'))

79 Data frames and Data Wrangling

Bioinformatics Training and Education Program

Note: There are other ways to reformat data in R. Check out the package reshape2 (https://

cran.r-project.org/web/packages/data.table/vignettes/datatable-reshape.html).

Review / Questions

Acknowledgements

Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for

Genomics lesson provided by datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-

introduction/index.html) and from a 2021 workshop entitled Introduction to Tidy Transciptomics

(https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html) by

Maria Doyle and Stefano Mangiola.

Resources

R for Data Science (https://r4ds.had.co.nz/index.html)

Statistical Inference via Data Science: A ModernDive into R and the tidyverse (https://

moderndive.com/3-wrangling.html)

BaseR cheatsheet

dplyr cheatsheet

tidyr cheatsheet

Other cheatsheets (https://www.rstudio.com/resources/cheatsheets/)

1.

2.

3.

4.

5.

6.

80 Data frames and Data Wrangling

Bioinformatics Training and Education Program

https://cran.r-project.org/web/packages/data.table/vignettes/datatable-reshape.html
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-reshape.html
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-reshape.html
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-reshape.html
https://cran.r-project.org/web/packages/data.table/vignettes/datatable-reshape.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://r4ds.had.co.nz/index.html
https://r4ds.had.co.nz/index.html
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
../resources/base-r_cheatsheet.pdf
../resources/dplyr_cheatsheet.pdf
../resources/tidyr_cheatsheet.pdf
https://www.rstudio.com/resources/cheatsheets/
https://www.rstudio.com/resources/cheatsheets/

Data visualization with ggplot2

Objectives

To learn how to create publishable figures using the ggplot2 package in R.

By the end of the course, students should be able to create simple, pretty, and effective figures.

Introducing ggplot2

ggplot2 is a R graphics package from the tidyverse collection. It allows the user to create

informative plots quickly by using a 'grammar of graphics' implementation, which is described

as "a coherent system for describing and building graphs" (R4DS). The power of this package is

that plots are built in layers and few changes to the code result in very different outcomes. This

makes it easy to reuse parts of the code for very different figures.

Being a part of the tidyverse collection, ggplot2 works best with long format data (i.e., tidy

data), which you should already be accustomed to.

To begin plotting, let's load our tidyverse library.

We also need some data to plot, so if you haven't already, let's load the data we will need for

this lesson.

#load libraries

library(tidyverse) # Tidyverse automatically loads ggplot2

── Attaching packages ─────────────────────────────────────── tidyverse 1.3.1 ──

✓ ggplot2 3.3.5 ✓ purrr 0.3.4

✓ tibble 3.1.6 ✓ dplyr 1.0.7

✓ tidyr 1.1.4 ✓ stringr 1.4.0

✓ readr 2.1.1 ✓ forcats 0.5.1

── Conflicts ── tidyverse_conflicts() ──

x dplyr::filter() masks stats::filter()

x dplyr::lag() masks stats::lag()

81 Data visualization with ggplot2

Bioinformatics Training and Education Program

The ggplot2 template

The following represents the basic ggplot2 template

The main components include data we want to plot, geom function(s), and mapping aesthetics.

Notice the + symbol following the ggplot() function. This symbol will precede each additional

layer of code for the plot, and it is important that it is placed at the end of the line. More on

geom functions and mapping aesthetics to come.

Let's see this template in practice.

What is the relationship between total transcript sums per sample and the number of recovered

transcripts per sample?

#scaled_counts

#We used this in lesson 2 so you may not need to reload

scaled_counts<-

 read.delim("./data/filtlowabund_scaledcounts_airways.txt",

 as.is=TRUE)

dexp<-read.delim("./data/diffexp_results_edger_airways.txt",

 as.is=TRUE)

ggplot(data = <DATA>) +

 <GEOM_FUNCTION>(mapping = aes(<MAPPINGS>))

#let's get some data

#we are only interested in transcript counts greater than 100

#read in the data

sc<-read.csv("./data/sc.csv")

#If you are curious how this was made; here is the code

#scaled_counts %>% group_by(dex, SampleName) %>%

summarize(Num_transcripts=sum(counts>100),TotalCounts=sum(counts))

#let's view the data

sc

dex SampleName Num_transcripts TotalCounts

1 trt GSM1275863 10768 18783120

2 trt GSM1275867 10051 15144524

3 trt GSM1275871 11658 30776089

4 trt GSM1275875 10900 21135511

82 Data visualization with ggplot2

Bioinformatics Training and Education Program

We can easily see that there is a relationship between the number of transcripts per sample and

the total transcripts recovered per sample. ggplot2 default parameters are great for

exploratory data analysis. But, with only a few tweaks, we can make some beautiful, publishable

figures.

What did we do in the above code?

The first step to creating this plot was initializing the ggplot object using the function ggplot().

Remember, we can look further for help using ?ggplot(). The function ggplot() takes data,

mapping, and further arguments. However, none of this needs to actually be provided at the

initialization phase, which creates the coordinate system from which we build our plot. But,

typically, you should at least call the data at this point.

5 untrt GSM1275862 11177 20608402

6 untrt GSM1275866 11526 25311320

7 untrt GSM1275870 11425 24411867

8 untrt GSM1275874 11000 19094104

#let's plot

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts))

83 Data visualization with ggplot2

Bioinformatics Training and Education Program

The data we called was from the data frame sc, which we created above. Next, we provided a

geom function (geom_point()), which created a scatter plot. This scatter plot required

mapping information, which we provided for the x and y axes. More on this in a moment.

Let's break down the individual components of the code.

#What does running ggplot() do?

ggplot(data=sc)

#What about just running a geom function?

geom_point(data=sc,aes(x=Num_transcripts, y = TotalCounts))

mapping: x = ~Num_transcripts, y = ~TotalCounts

geom_point: na.rm = FALSE

stat_identity: na.rm = FALSE

position_identity

84 Data visualization with ggplot2

Bioinformatics Training and Education Program

Geom functions

A geom is the geometrical object that a plot uses to represent data. People often

describe plots by the type of geom that the plot uses. --- R4DS (https://

r4ds.had.co.nz/data-visualisation.html#geometric-objects)

There are multiple geom functions that change the basic plot type or the plot representation. We

can create scatter plots (geom_point()), line plots (geom_line(),geom_path()), bar plots

(geom_bar(), geom_col()), line modeled to fitted data (geom_smooth()), heat maps

(geom_tile()), geographic maps (geom_polygon()), etc.

ggplot2 provides over 40 geoms, and extension packages provide even more (see

https://exts.ggplot2.tidyverse.org/gallery/ for a sampling). The best way to get a

comprehensive overview is the ggplot2 cheatsheet, which you can find at http://

rstudio.com/resources/cheatsheets. --- R4DS (https://r4ds.had.co.nz/data-

visualisation.html)

#what about this

ggplot() +

geom_point(data=sc,aes(x=Num_transcripts, y = TotalCounts))

85 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://r4ds.had.co.nz/data-visualisation.html#geometric-objects
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html

You can also see a number of options pop up when you type geom into the console, or you can

look up the ggplot2 documentation in the help tab.

We can see how easy it is to change the way the data is plotted. Let's plot the same data using

geom_line().

Mapping and aesthetics (aes())

The geom functions require a mapping argument. The mapping argument includes the aes()

function, which "describes how variables in the data are mapped to visual properties

(aesthetics) of geoms" (ggplot2 R Documentation). If not included it will be inherited from the

ggplot() function.

An aesthetic is a visual property of the objects in your plot.---R4DS (https://

r4ds.had.co.nz/data-visualisation.html)

Mapping aesthetics include some of the following:

1. the x and y data arguments

2. shapes

ggplot(data=sc) +

 geom_line(aes(x=Num_transcripts, y = TotalCounts))

86 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html

3. color

4. fill

5. size

6. linetype

7. alpha

This is not an all encompassing list.

Let's return to our plot above. Is there a relationship between treatment ("dex") and the number

of transcripts or total counts?

There is potentially a relationship. ASM cells treated with dexamethasone in general have lower

total numbers of transcripts and lower total counts.

#adding the color argument to our mapping aesthetic

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,color=dex))

87 Data visualization with ggplot2

Bioinformatics Training and Education Program

Notice how we changed the color of our points to represent a variable, in this case. To do this,

we set color equal to 'dex' within the aes() function. This mapped our aesthetic, color, to a

variable we were interested in exploring. Aesthetics that are not mapped to our variables are

placed outside of the aes() function. These aesthetics are manually assigned and do not

undergo the same scaling process as those within aes().

For example

We can also see from this that 'dex' could be mapped to other aesthetics. In the above

example, we see it mapped to shape rather than color. By default, ggplot2 will only map six

shapes at a time, and if your number of categories goes beyond 6, the remaining groups will go

unmapped. This is by design because it is hard to discriminate between more than six shapes

at any given moment. This is a clue from ggplot2 that you should choose a different aesthetic to

map to your variable. However, if you choose to ignore this functionality, you can manually

assign more than six shapes (https://r-graphics.org/recipe-scatter-shapes).

#map the shape aesthetic to the variable "dex"

#use the color purple across all points (NOT mapped to a variable)

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,shape=dex),

 color="purple")

88 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://r-graphics.org/recipe-scatter-shapes
https://r-graphics.org/recipe-scatter-shapes

We could have just as easily mapped it to alpha, which adds a gradient to the point visibility by

category.

Or we could map it to size. There are multiple options, so explore a little with your plots.

Other things to note:

The assignment of color, shape, or alpha to our variable was automatic, with a unique aesthetic

level representing each category (i.e., 'trt', 'untrt') within our variable. You will also notice that

ggplot2 automatically created a legend to explain the levels of the aesthetic mapped. We can

change aesthetic parameters - what colors are used, for example - by adding additional layers

to the plot. We will be adding layers throughout the tutorial.

#map the alpha aesthetic to the variable "dex"

#use the color purple across all points (NOT mapped to a variable)

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,alpha=dex),

 color="purple") #note the warning.

Warning: Using alpha for a discrete variable is not advised.

89 Data visualization with ggplot2

Bioinformatics Training and Education Program

R objects can also store figures

As we have discussed, R objects are used to store things created in R to memory. This includes

plots.

We can add additional layers directly to our object. We will see how this works by defining some

colors for our 'dex' variable.

Colors

ggplot2 will automatically assign colors to the categories in our data. Colors are assigned to

the fill and color aesthetics in aes(). We can change the default colors by providing an

additional layer to our figure. To change the color, we use the scale_color functions:

scale_color_manual(), scale_color_brewer(), scale_color_grey(), etc. We can

also change the name of the color labels in the legend using the labels argument of these

functions

dot_plot<-ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,color=dex))

dot_plot

90 Data visualization with ggplot2

Bioinformatics Training and Education Program

dot_plot +

 scale_color_manual(values=c("red","black"),

 labels=c('treated','untreated'))

dot_plot +

 scale_color_grey()

91 Data visualization with ggplot2

Bioinformatics Training and Education Program

dot_plot +

 scale_color_brewer(palette = "Paired")

92 Data visualization with ggplot2

Bioinformatics Training and Education Program

Similarly,if we want to change the fill, we would use the scale_fill options. To apply scale_fill to

shape, we will have to alter the shapes, as only some shapes take a fill argument.

93 Data visualization with ggplot2

Bioinformatics Training and Education Program

{width=50%}

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),

 shape=21,size=2) + #increase size and change points

 scale_fill_manual(values=c("purple", "yellow"))

94 Data visualization with ggplot2

Bioinformatics Training and Education Program

There are a number of ways to specify the color argument including by name, number, and hex

code.Here (https://www.r-graph-gallery.com/ggplot2-color.html) is a great resource from the R

Graph Gallery (https://www.r-graph-gallery.com/index.html) for assigning colors in R.

There are also a number of complementary packages in R that expand our color options. One

of my favorites is viridis, which provides colorblind friendly palettes. randomcoloR is a

great package if you need a large number of unique colors.

library(viridis) #Remember to load installed packages before use

Loading required package: viridisLite

dot_plot + scale_color_viridis(discrete=TRUE, option="viridis")

95 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://www.r-graph-gallery.com/ggplot2-color.html
https://www.r-graph-gallery.com/ggplot2-color.html
https://www.r-graph-gallery.com/index.html
https://www.r-graph-gallery.com/index.html
https://www.r-graph-gallery.com/index.html

Paletteer contains a comprehensive set of color palettes, if you want to load the palettes

from multiple packages all at once. See the Github page (https://github.com/EmilHvitfeldt/

paletteer) for details.

Facets

A way to add variables to a plot beyond mapping them to an aesthetic is to use facets or

subplots. There are two primary functions to add facets, facet_wrap() and facet_grid().

If faceting by a single variable, use facet_wrap(). If multiple variables, use facet_grid().

The first argument of either function is a formula, with variables separated by a ~ (See below).

Variables must be discrete (not continuous).

You should remember this plot from our reshaping example. The gene counts in the

scaled_counts data were scaled to account for technical and composition differences using the

trimmed mean of M values (TMM) from EdgeR (Robinson and Oshlack 2010). We can compare

scaled vs unscaled counts by sample easily using faceting.

#density plot

#let's grab the data and take a look

density_data<-read.csv("./data/density_data.csv",

 stringsAsFactors=TRUE)

96 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://github.com/EmilHvitfeldt/paletteer
https://github.com/EmilHvitfeldt/paletteer
https://github.com/EmilHvitfeldt/paletteer
https://github.com/EmilHvitfeldt/paletteer

head(density_data)

feature sample SampleName cell dex albut Run avgLength

1 ENSG00000000003 508 GSM1275862 N61311 untrt untrt SRR1039508 126

2 ENSG00000000003 508 GSM1275862 N61311 untrt untrt SRR1039508 126

3 ENSG00000000419 508 GSM1275862 N61311 untrt untrt SRR1039508 126

4 ENSG00000000419 508 GSM1275862 N61311 untrt untrt SRR1039508 126

5 ENSG00000000457 508 GSM1275862 N61311 untrt untrt SRR1039508 126

6 ENSG00000000457 508 GSM1275862 N61311 untrt untrt SRR1039508 126

Experiment Sample BioSample transcript ref_genome .abundant TMM

1 SRX384345 SRS508568 SAMN02422669 TSPAN6 hg38 TRUE 1.055278

2 SRX384345 SRS508568 SAMN02422669 TSPAN6 hg38 TRUE 1.055278

3 SRX384345 SRS508568 SAMN02422669 DPM1 hg38 TRUE 1.055278

4 SRX384345 SRS508568 SAMN02422669 DPM1 hg38 TRUE 1.055278

5 SRX384345 SRS508568 SAMN02422669 SCYL3 hg38 TRUE 1.055278

6 SRX384345 SRS508568 SAMN02422669 SCYL3 hg38 TRUE 1.055278

multiplier source abundance

1 1.415149 counts 679.0000

2 1.415149 counts_scaled 960.8864

3 1.415149 counts 467.0000

4 1.415149 counts_scaled 660.8748

5 1.415149 counts 260.0000

6 1.415149 counts_scaled 367.9388

#plot

ggplot(data= density_data)+

 aes(x=abundance,

 color=SampleName)+ #initialize ggplot

 geom_density() + #call density plot geom

 facet_wrap(~source) + #use facet_wrap; see ~source

 scale_x_log10()#scales the x axis using a base-10 log transformation

Warning: Transformation introduced infinite values in continuous x-axis

Warning: Removed 140 rows containing non-finite values (stat_density).

97 Data visualization with ggplot2

Bioinformatics Training and Education Program

The distributions of sample counts did not differ greatly between samples before scaling, but

regardless, we can see that the distributions are more similar after scaling.

Here, faceting allowed us to visualize multiple features of our data. We were able to see count

distributions by sample as well as normalized vs non-normalized counts.

Note the help options with ?facet_wrap(). How would we make our plot facets vertical rather

than horizontal?

ggplot(data= density_data)+ #initialize ggplot

 geom_density(aes(x=abundance,

 color=SampleName)) + #call density plot geom

 facet_wrap(~source, ncol=1) + #use the ncol argument

 scale_x_log10()

Warning: Transformation introduced infinite values in continuous x-axis

Warning: Removed 140 rows containing non-finite values (stat_density).

98 Data visualization with ggplot2

Bioinformatics Training and Education Program

We could plot each sample individually using facet_grid()

ggplot(data= density_data)+ #initialize ggplot

 geom_density(aes(x=abundance,

 color=SampleName)) + #call density plot geom

 facet_grid(as.factor(sample)~source) + # formula is sample ~ source

 scale_x_log10()

Warning: Transformation introduced infinite values in continuous x-axis

Warning: Removed 140 rows containing non-finite values (stat_density).

99 Data visualization with ggplot2

Bioinformatics Training and Education Program

Using multiple geoms per plot

Because we build plots using layers in ggplot2. We can add multiple geoms to a plot to

represent the data in unique ways.

#We can combine geoms; here we combine a scatter plot with a

#add a line to our plot

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,color=dex)) +

 geom_line(aes(x=Num_transcripts, y = TotalCounts,color=dex))

100 Data visualization with ggplot2

Bioinformatics Training and Education Program

#to make our code more effective, we can put shared aesthetics in the

#ggplot function

ggplot(data=sc, aes(x=Num_transcripts, y = TotalCounts,color=dex)) +

 geom_point() +

 geom_line()

101 Data visualization with ggplot2

Bioinformatics Training and Education Program

#or plot different aesthetics per layer

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,

 color=SampleName)) +

 geom_line(aes(x=Num_transcripts, y = TotalCounts,color=dex))

102 Data visualization with ggplot2

Bioinformatics Training and Education Program

#you can also add subsets of data in a new layer without overriding

#preceding layers

#let's only provide a line for the treated samples

 ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,

 color=SampleName)) +

 geom_line(data=filter(sc,dex=="trt"),

 aes(x=Num_transcripts, y = TotalCounts,color=dex))

103 Data visualization with ggplot2

Bioinformatics Training and Education Program

To get multiple legends for the same aesthetic, check out the CRAN package ggnewscale

(https://cran.r-project.org/web/packages/ggnewscale/index.html).

Statistical transformations

Many graphs, like scatterplots, plot the raw values of your dataset. Other graphs,

like bar charts, calculate new values to plot:

bar charts, histograms, and frequency polygons bin your data and then plot

bin counts, the number of points that fall in each bin.

smoothers fit a model to your data and then plot predictions from the model.

boxplots compute a robust summary of the distribution and then display a

specially formatted box. The algorithm used to calculate new values for a

graph is called a stat, short for statistical transformation. --- R4DS (https://

r4ds.had.co.nz/data-visualisation.html#statistical-transformations)

Let's plot a bar graph using the same data (sc) from above.

•

•

•

#returns an error message. What went wrong?

ggplot(data=sc) +

 geom_bar(aes(x=Num_transcripts, y = TotalCounts))

104 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://cran.r-project.org/web/packages/ggnewscale/index.html
https://cran.r-project.org/web/packages/ggnewscale/index.html
https://cran.r-project.org/web/packages/ggnewscale/index.html
https://cran.r-project.org/web/packages/ggnewscale/index.html
https://cran.r-project.org/web/packages/ggnewscale/index.html
https://r4ds.had.co.nz/data-visualisation.html#statistical-transformations
https://r4ds.had.co.nz/data-visualisation.html#statistical-transformations
https://r4ds.had.co.nz/data-visualisation.html#statistical-transformations
https://r4ds.had.co.nz/data-visualisation.html#statistical-transformations

Let's look at another example.

Error: stat_count() can only have an x or y aesthetic.

#What's the difference between stat identity and stat count?

ggplot(data=sc) +

 geom_bar(aes(x=Num_transcripts, y = TotalCounts), stat="identity")

#Let's filter our data to only include 4 transcripts of interest

#We used this code in the tidyverse lesson

keep_t<-c("CPD","EXT1","MCL1","LASP1")

interesting_trnsc<-scaled_counts %>%

 filter(transcript %in% keep_t) %>% droplevels()

#the default here is `stat_count()`

ggplot(data = interesting_trnsc) +

 geom_bar(mapping = aes(x = transcript, y=counts_scaled))

Error: stat_count() can only have an x or y aesthetic.

105 Data visualization with ggplot2

Bioinformatics Training and Education Program

This is not a very useful figure, and probably not worth plotting. We could have gotten this info

using str(). However, the point here is that there are default statistical transformations

occurring with many geoms, and you can specify alternatives.

Let's change the stat parameter to "identity". This will plot the raw values of the normalized

counts rather than how many rows are present for each transcript.

#Let's take away the y aesthetic

ggplot(data = interesting_trnsc) +

 geom_bar(mapping = aes(x = transcript))

#stat identity defaulted to a stacked barplot

ggplot(data = interesting_trnsc) +

 geom_bar(mapping = aes(x = transcript,y=counts_scaled,

 fill=SampleName),

 stat="identity",color="black") +

 facet_wrap(~dex)

106 Data visualization with ggplot2

Bioinformatics Training and Education Program

#What if we wanted the columns side by side

#introducing the position argument

ggplot(data = interesting_trnsc) +

 geom_bar(mapping = aes(x = transcript,y=counts_scaled,

 fill=SampleName),

 stat="identity",color="black",position="dodge") +

 facet_wrap(~dex)

107 Data visualization with ggplot2

Bioinformatics Training and Education Program

How do we know what the default stat is for geom_bar()? Well, we could read the

documentation, ?geom_bar(). This is true of multiple geoms. The statistical transformation can

often be customized, so if the default is not what you need, check out the documentation to

learn more about how to make modifications. For example, you could provide custom mapping

for a box plot. To do this, see the examples section of the geom_boxplot() documentation.

Coordinate systems

ggplot2 uses a default coordinate system (the Cartesian coordinate system). This isn't super

important until we want to do something like make a map (See coord_quickmap()) or pie

chart (See coord_polar()).

When will we have to think about coordinate systems? We likely won't have to modify from

default in too many cases (see those above). The most common circumstance in which we will

likely need to change coordinate system is in the event that we want to switch the x and y axes

(?coord_flip()).

#let's return to our bar plot above

#get horizontal bars instead of vertical bars

ggplot(data = interesting_trnsc) +

 geom_bar(mapping = aes(x = transcript,y=counts_scaled,

108 Data visualization with ggplot2

Bioinformatics Training and Education Program

Labels, legends, scales, and themes

How do we ultimately get our figures to a publishable state? The bread and butter of pretty plots

really falls to the additional non-data layers of our ggplot2 code. These layers will include code

to label the axes, scale the axes, and customize the legends and theme (https://

ggplot2.tidyverse.org/reference/theme.html).

The default axes and legend titles come from the ggplot2 code.

 fill=SampleName),

 stat="identity",color="black",position="dodge") +

 facet_wrap(~dex) +

 coord_flip()

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),

 shape=21,size=2) +

 scale_fill_manual(values=c("purple", "yellow"))

109 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html
https://ggplot2.tidyverse.org/reference/theme.html

In the above plot, the y-axis label (TotalCounts) is the variable name mapped to the y aesthetic,

while the x-axis label (Num_transcripts) is the variable name named to the x aesthetic. The fill

aesthetic was set equal to "dex", and so this became the default title of the fill legend. We can

change these labels using ylab(), xlab(), and guide() for the legend.

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),

 shape=21,size=2) +

 scale_fill_manual(values=c("purple", "yellow"),

 labels=c('treated','untreated'))+

 #can change labels of fill levels along with colors

 xlab("Recovered transcripts per sample") + #add x label

 ylab("Total sequences per sample") #add y label

110 Data visualization with ggplot2

Bioinformatics Training and Education Program

Let's change the legend title.

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),

 shape=21,size=2) +

 scale_fill_manual(values=c("purple", "yellow"),

 labels=c('treated','untreated'))+

 #can change labels of fill levels along with colors

 xlab("Recovered transcripts per sample") + #add x label

 ylab("Total sequences per sample") +#add y label

 guides(fill = guide_legend(title="Treatment"))

111 Data visualization with ggplot2

Bioinformatics Training and Education Program

We can modify the axes scales of continuous variables using scale_x_contiuous() and

scale_y_continuous(). Discrete (categorical variable) axes can be modified using

scale_x_discrete() and scale_y_discrete().

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),

 shape=21,size=2) +

 scale_fill_manual(values=c("purple", "yellow"),

 labels=c('treated','untreated'))+

 #can change labels of fill levels along with colors

 xlab("Recovered transcripts per sample") + #add x label

 ylab("Total sequences per sample") +#add y label

 guides(fill = guide_legend(title="Treatment")) + #label the legend

 scale_y_continuous(breaks=seq(1.0e7, 3.5e7, by = 2e6),

 limits=c(1.0e7,3.5e7)) #change breaks and limits

112 Data visualization with ggplot2

Bioinformatics Training and Education Program

#maybe we want this on a logarithmic scale

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),

 shape=21,size=2) +

 scale_fill_manual(values=c("purple", "yellow"),

 labels=c('treated','untreated'))+

 #can change labels of fill levels along with colors

 xlab("Recovered transcripts per sample") + #add x label

 ylab("Total sequences per sample") +#add y label

 guides(fill = guide_legend(title="Treatment")) + #label the legend

 scale_y_continuous(trans="log10") #use the trans argument

113 Data visualization with ggplot2

Bioinformatics Training and Education Program

Finally, we can change the overall look of non-data elements of our plot (titles, labels, fonts,

background, gridlines, and legends) by customizing ggplot2 themes. Check out ?

ggplot2::theme(). For a list of available parameters. ggplot2 provides 8 complete themes,

with theme_gray() as the default theme.

114 Data visualization with ggplot2

Bioinformatics Training and Education Program

You can also create your own custom theme and then apply it to all figures in a plot.

Create a custom theme to use with multiple figures.

#Setting a theme

my_theme <-

 theme_bw() +

 theme(

 panel.border = element_blank(),

 axis.line = element_line(),

 panel.grid.major = element_line(size = 0.2),

 panel.grid.minor = element_line(size = 0.1),

 text = element_text(size = 12),

 legend.position = "bottom",

 axis.text.x = element_text(angle = 30, hjust = 1, vjust = 1)

115 Data visualization with ggplot2

Bioinformatics Training and Education Program

Saving plots (ggsave())

Finally, we have a quality plot ready to publish. The next step is to save our plot to a file. The

easiest way to do this with ggplot2 is ggsave(). This function will save the last plot that you

displayed by default. Look at the function parameters using ?ggsave().

)

ggplot(data=sc) +

 geom_point(aes(x=Num_transcripts, y = TotalCounts,fill=dex),

 shape=21,size=2) +

 scale_fill_manual(values=c("purple", "yellow"),

 labels=c('treated','untreated'))+

 #can change labels of fill levels along with colors

 xlab("Recovered transcripts per sample") + #add x label

 ylab("Total sequences per sample") +#add y label

 guides(fill = guide_legend(title="Treatment")) + #label the legend

 scale_y_continuous(trans="log10") + #use the trans argument

 my_theme

116 Data visualization with ggplot2

Bioinformatics Training and Education Program

Nice plot example

These steps can be used to create a publish worthy figure. For example, let's create a volcano

plot of our differential expression results.

A volcano plot is a type of scatterplot that shows statistical significance (P value)

versus magnitude of change (fold change). It enables quick visual identification of

genes with large fold changes that are also statistically significant. These may be

the most biologically significant genes. --- Maria Doyle, 2021 (https://

training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-

viz-with-volcanoplot/tutorial.html)

Plot

ggsave("Plot1.png",width=5.5,height=3.5,units="in",dpi=300)

#get the data

dexp_sigtrnsc<-dexp %>%

 mutate(Significant = FDR < 0.05 & abs(logFC) >= 2) %>% arrange(FDR)

topgenes<-dexp_sigtrnsc$transcript[c(1:6)]

#install.packages(ggrepel)

library(ggrepel)

ggplot(data=dexp_sigtrnsc,aes(x = logFC, y = log10(FDR))) +

 geom_point(aes(color = Significant, size = Significant,

 alpha = Significant)) +

 geom_text_repel(data=dexp_sigtrnsc %>%

 filter(transcript %in% topgenes),

 aes(label=transcript),

 nudge_y=0.5,hjust=0.5,direction="y",

 segment.color="gray") +

 scale_y_reverse(limits=c(0,-7))+

 scale_color_manual(values = c("black", "#e11f28")) +

 scale_size_discrete(range = c(0, 2)) +

 guides(size = "none", alpha= "none")+

 my_theme

Warning: Using size for a discrete variable is not advised.

Warning: Using alpha for a discrete variable is not advised.

117 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html
https://training.galaxyproject.org/training-material/topics/transcriptomics/tutorials/rna-seq-viz-with-volcanoplot/tutorial.html

Recommendations for creating publishable figures

(Inspired by Visualizing Data in the Tidyverse, a Coursera lesson)

Consider whether the plot type you have chosen is the best way to convey your message

Make your plot visually appealing

Careful color selection - color blind friendly if possible

Eliminate unnecessary white space

Carefully choose themes including font types

Label all axes with concise and informative labels

These labels should be straight forward and adequately describe the data

Ask yourself "Does the data make sense?"

Does the data plotted address the question you are answering?

Try not to mislead the audience

Often this means starting the y-axis at 0

Keep axes consistent when arranging facets or multiple plots

1.

2.

◦

◦

◦

3.

◦

4.

◦

5.

◦

◦

118 Data visualization with ggplot2

Bioinformatics Training and Education Program

Do not try to convey too much information in the same plot

Keep plots fairly simple

Complementary packages

There are many complementary R packages related to creating publishable figures using

ggplot2. Check out the packages cowplot (https://cran.r-project.org/web/packages/cowplot/

vignettes/introduction.html) and ggpubr (https://github.com/kassambara/ggpubr) . Cowplot is

particularly great for providing functions that facilitate arranging multiple plots in a grid panel.

Usually publications restrict the number of figures allowed, and so it is helpful to be able to

group multiple figures into a single figure panel. GGpubr is particularly great for beginners,

providing easy code to make publish worthy figures. It is particularly great for stats integration

and easily incorporating brackets and p-values for group comparisons.

Resource list

ggplot2 cheatsheet

The R Graph Gallery (https://www.r-graph-gallery.com/)

The R Graphics Cookbook (https://r-graphics.org/recipe-quick-bar)

Acknowledgements

Material from this lesson was adapted from Chapter 3 of R for Data Science (https://

r4ds.had.co.nz/data-visualisation.html) and from a 2021 workshop entitled Introduction to Tidy

Transciptomics (https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/

tidytranscriptomics.html) by Maria Doyle and Stefano Mangiola.

6.

◦

1.

2.

3.

119 Data visualization with ggplot2

Bioinformatics Training and Education Program

https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html
https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html
https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html
https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html
https://cran.r-project.org/web/packages/cowplot/vignettes/introduction.html
https://github.com/kassambara/ggpubr
https://github.com/kassambara/ggpubr
https://github.com/kassambara/ggpubr
../resources/ggplot2_cheatsheet.pdf
https://www.r-graph-gallery.com/
https://www.r-graph-gallery.com/
https://r-graphics.org/recipe-quick-bar
https://r-graphics.org/recipe-quick-bar
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://r4ds.had.co.nz/data-visualisation.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html
https://stemangiola.github.io/bioc2021_tidytranscriptomics/articles/tidytranscriptomics.html

Bioconductor and Data Reporting

Objectives

1. To explore Bioconductor, a repository for R packages related to biological data analysis.

2. To generate high quality data reports using R Markdown to make data analysis more

reproducible.

Introducing Bioconductor

Bioconductor (https://bioconductor.org/) is a repository for R packages related to biological

data analysis, and as such it is a great place to search for -omics packages and pipelines. For

a comprehensive list of packages ranked by number of downloads, click here (https://

bioconductor.org/packages/release/BiocViews.html#___Software).

How to install a Bioconductor package?

The latest version of Bioconductor works with R version 4.1.0 for complete implementation. You

may need to update your R installation.

To install a Bioconductor package, you will first need to installBiocManager, a CRAN package.

You can then use BiocManager to install the Bioconductor core packages or any specific

package.

To install the Bioconductor core packages, use the following:

To install a specific package:

The easiest way to search Bioconductor for a topic specific pacakge is to use the BiocViews

search (https://bioconductor.org/packages/release/BiocViews.html#___Software) . Here is an

#install core packages

if (!require("BiocManager", quietly = TRUE))

 install.packages("BiocManager")

BiocManager::install()

###if you just want to install BiocManager use:

install.packages("BiocManager")

BiocManager::install("tidybulk") #replace tidybulk with the name of

#the package that interests you.

120 Bioconductor and Data Reporting

Bioinformatics Training and Education Program

https://bioconductor.org/
https://bioconductor.org/
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software
https://bioconductor.org/packages/release/BiocViews.html#___Software

example searching for an RNAseq related package:

As you can see, the most popular packages are listed first.

Introducing R Markdown

For the purposes of reproducibility or collaboration, it is good practice to generate a report

summarizing what has been done along with output results. This saves collaborators or your

future self from trying to figure out how results were generated or from which script they were

generated. Fortunately, there is rmarkdown for easy reporting of R code, results, and

interpretation. R Markdown is integrated within RStudio, and the rmarkdown package can be

installed using the following:

In addition, R Markdown reports are dynamic, and as code is modified a new report can easily

be generated using the knitr package, which is also integrated into RStudio. The key to

knitr is a mixture of explanatory text with code chunks that are executed with each "knit" of the

document.

install.packages("rmarkdown")

install.packages("knitr")

121 Bioconductor and Data Reporting

Bioinformatics Training and Education Program

Creating an Rmarkdown file

To create an Rmarkdown file, select the new file icon and then R Markdown.

A box will appear prompting for an author, title, and output format. Give your document an initial

title and select the output that you want. Note: this information can be modified at any time.

122 Bioconductor and Data Reporting

Bioinformatics Training and Education Program

{width=50%}

123 Bioconductor and Data Reporting

Bioinformatics Training and Education Program

Select OK. A new R Markdown document should have been created.

Now you can begin generating a report. Thankfully, the document you just created includes

some information to get you started, including some initial code chunks. I am NOT going to

provide more detail on report generation here. There is extensive documentation only a google

search away. See the resources section of this document for help. When you are ready to

generate the output, whether an html, doc, or pdf, simply select the "Knit" button at the top of

the page.

{width=70%}

Acknowledgements

Material from this lesson was either taken directly or adapted from the Intro to R and RStudio for

Genomics lesson provided by datacarpentry.org (https://datacarpentry.org/genomics-r-intro/01-

introduction/index.html).

Resources

R markdown documentation from RStudio (https://rmarkdown.rstudio.com/lesson-1.html) 1.

124 Bioconductor and Data Reporting

Bioinformatics Training and Education Program

https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://datacarpentry.org/genomics-r-intro/01-introduction/index.html
https://rmarkdown.rstudio.com/lesson-1.html
https://rmarkdown.rstudio.com/lesson-1.html

Other helpful resources, including comprehensive guides and cheatsheets can be

accessed from here (https://cran.r-project.org/web/packages/rmarkdown/vignettes/

rmarkdown.html).

2.

125 Bioconductor and Data Reporting

Bioinformatics Training and Education Program

https://cran.r-project.org/web/packages/rmarkdown/vignettes/rmarkdown.html
https://cran.r-project.org/web/packages/rmarkdown/vignettes/rmarkdown.html
https://cran.r-project.org/web/packages/rmarkdown/vignettes/rmarkdown.html
https://cran.r-project.org/web/packages/rmarkdown/vignettes/rmarkdown.html

Test Your Learning

Bioinformatics Training and Education Program

Lesson1 TYL

Which of the following functions is used to print your working directory in R?

a. pwd

b. Setwd()

c. getwd()

d. wkdir()

Which of the following can be used to learn more regarding an R function?

a. ?function()

b. ??function()

c. args(function)

d. All of the above

Given the following R code:

What type of data is stored in this vector?

a. double

b. character

c. logical

d. complex

Given the following R code:

What does line 2 do:

a. renames the object "fruit" to "mango"

b. adds "mango" to an existing vector named "fruit"

c. replaces "bananas" with "mango"

d. replaces "kiwi" with "mango"

Given the following R code:

1.

2.

3.

numbers<- c("1","2.56","83","678")

4.

1- fruit<-c("apples", "bananas", "oranges", "grapes","kiwi","kumquat")

2- fruit[5]<-"mango"

5.

Total_subjects <- c(23, 4, 679, 3427, 12, 890, 654)

127 Lesson1 TYL

Bioinformatics Training and Education Program

Which of the following could be used to return all values less than 678 in the vector

"Total_subjects"?

a. Total_subjects < 678

b. Total_subjects[> 678]

c. Total_subjects(Total_subjects < 678)

d. Total_subjects[Total_subjects < 678]

128 Lesson1 TYL

Bioinformatics Training and Education Program

Lesson1 TYL Solutions

Test Your Learning: Solutions (Lesson 1)

C

D

B

D

D

1.

2.

3.

4.

5.

129 Lesson1 TYL Solutions

Bioinformatics Training and Education Program

Lesson2 TYL

Which of the following will NOT print the "Run" column from scaled_counts?

a. scaled_counts$Run

b. scaled_counts["Run"]

c. scaled_counts[8,]

d. scaled_counts[8]

What is the column index for "avgLength" from the scaled_counts df?

a. 3

b. 8

c. 12

d. 9

How many categories or levels are there in sscaled$cell?

a. 4

b. 2

c. 7

d. 1

What are the dimensions of sscaled[scaled_counts <= 500,]?

a. 127408, 6

b. 675192, 6

c. 3, 3

d. 3595, 6

Using what you have learned about select() and filter(), return the dimensions of

scaled_counts if we only want the columns 'sample', 'cell', 'dex', 'transcript', and

'counts_scaled' and only rows that include the treatment "untrt" and the transcripts

"ACTN1" and "ANAPC4"? Remember: the dex column contains the treatments. a. 63704, 5

b. 4, 5

c. 8, 5

d. 63712, 5

Which of the following would return the mean scaled transcript counts by cell type?

a. scaled_counts %>% group_by(cell) %>%

summarize(m_counts=mean(counts_scaled))

b. scaled_counts %>% arrange(cell) %>% summarize(m_counts=mean(counts_scaled))

c. scaled_counts %>% group_by(cell) %>% mutate(m_counts=mean(counts_scaled))

d. scaled_counts %>% group_by(cell,transcript) %>%

summarize(m_counts=mean(counts_scaled))

1.

2.

3.

4.

5.

6.

130 Lesson2 TYL

Bioinformatics Training and Education Program

Lesson2 TYL solutions

Test Your Learning: Solutions (Lesson 2)

C

D

A

B

C

A

1.

2.

3.

4.

5.

6.

131 Lesson2 TYL solutions

Bioinformatics Training and Education Program

Additional Exercises

Bioinformatics Training and Education Program

Lesson 2 Exercise Questions: Part 1 (BaseR

subsetting and Factors)

The filtlowabund_scaledcounts_airways.txt includes normalized and non-normalized transcript

count data from an RNAseq experiment. You can read more about the experiment here (https://

pubmed.ncbi.nlm.nih.gov/24926665/).

We are going to use the filtlowabund_scaledcounts_airways.txt file for this exericise. Get the

data here

Putting what we have learned to the test:

The following questions synthesize several of the skills you have learned thus far. It may not be

immediately apparent how you would go about answering these questions. Remember, the R

community is expansive, and there are a number of ways to get help including but not limited to

google search. These questions have multiple solutions, but you should try to stick to the tools

you have learned to use thus far.

Import the filtlowabund_scaledcounts_airways.txt into R and save to an R object named

transcript_counts. Try not to use the dropdown menu for loading the data.

What are the dimensions of transcript_counts?

What are the column names?

Is there a difference in the number of transcripts with greater than 0 normalized counts

per sample? What commands did you use to answer this question.

How many categories of transcripts are there? Think about what you know regarding

factors.

How many categories of transcripts are there when only considering transcripts with

greater than 0 normalized counts per sample? (See question 5)

Subset transcript_counts to only include the following columns: sample, cell, dex,

transcript, avgLength, counts_scaled. Save this new dataframe to a new object called

transc_df.

Using your new data frame from question seven (transc_df), rename the column "sample"

to "Sample".

What is the mean and standard deviation of "avgLength" across the entire transc_df data

frame? Hint: Read the help documentation for mean() and sd().

1.

2.

3.

4.

5.

6.

7.

8.

9.

133 Lesson 2 Exercise Questions: Part 1 (BaseR subsetting and Factors)

Bioinformatics Training and Education Program

https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
../../data/filtlowabund_scaledcounts_airways.txt

Make a data frame with the column names "Mean" and "Standard Dev" that holds the

values from question 9. Hint: check out the function data.frame().
10.

134 Lesson 2 Exercise Questions: Part 1 (BaseR subsetting and Factors)

Bioinformatics Training and Education Program

Lesson 2 Exercise Questions: Part 2

(Tidyverse)

The filtlowabund_scaledcounts_airways.txt includes normalized and non-normalized transcript

count data from an RNAseq experiment. You can read more about the experiment here (https://

pubmed.ncbi.nlm.nih.gov/24926665/). You can obtain the data outside of class here.

The diffexp_results_edger_airways.txt includes results from differential expression analysis

using EdgeR. You can obtain the data outside of class here.

Putting what we have learned to the test:

The following questions synthesize several of the skills you have learned thus far. It may not be

immediately apparent how you would go about answering these questions. Remember, the R

community is expansive, and there are a number of ways to get help including but not limited to

google search. These questions have multiple solutions, but try to solve the problem using

tidyverse.

The normalized and non-normalized count data should be saved to the object

scaled_counts. The differential expression results should be saved to the object dexp.

Select the following columns from the scaled_counts data frame: sample, cell, dex,

Run, transcript, avgLength, and counts_scaled. However, rearrange the columns so that

the column 'Run' follows 'sample' and 'avgLength' is the last column. Save this to the

object df_counts.

Explore the column 'avgLength' in df_counts. Does the data in this column vary within a

sample? How could we figure this out if we didn't know what was in this column?

Create a data frame that contains the mean, standard deviation, median, minimum, and

maximum of the normalized counts (in column counts_scaled) by treatment (dex) and cell

line (cell). Store this in an object named sumstats_counts.

Using the differential expression results, create a data frame with the top five differentially

expressed genes by p-value. Hint: Top genes in this case will have the smallest FDR

corrected p-value and an absolute value of the log fold change greater than 2. (Lesson 2

challenge question)

Filter the data frame scaled_counts to include only our top five differentially expressed

genes (from question 4) and save to a new object named top_gene_counts.

Create a data frame of the mean, median, and standard deviation of the normalized

counts for each of our top transcripts by treatment (dex). Is there a large amount of

variation within a treatment?

1.

2.

3.

4.

5.

6.

135 Lesson 2 Exercise Questions: Part 2 (Tidyverse)

Bioinformatics Training and Education Program

https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
https://pubmed.ncbi.nlm.nih.gov/24926665/
../../data/filtlowabund_scaledcounts_airways.txt
../../data/diffexp_results_edger_airways.txt

Return a filtered data frame of the differential expression results. We want to look at only

the transcripts with logCPM greater than 3 with a logFC greater than or equal to an

absolute value of 2.5 and an adjusted (FDR) p-value less than 0.001.

7.

136 Lesson 2 Exercise Questions: Part 2 (Tidyverse)

Bioinformatics Training and Education Program

DNAnexus

Bioinformatics Training and Education Program

Navigating DNAnexus

DNAnexus is a Cloud-based platform for NextGen Sequence analysis for which

CCR has a "site-license". For this class we are using the platform to provide a

uniform, stable, preinstalled interface for R training. This interface makes use of the

Web version of R-studio. In addition to the R-studio interface this process also

integrates the course-notes for the class in one window.

The following instructions should be followed when using this resource during

formal class time. For using this resource outside class times see the document

entitled "DNAnexus Basics".

Instruction for using DNAnexus for the Intro to R

class

Getting a DNAnexus account - every student should go to the main DNAnexus web page

(https://dnanexus.com/) and apply for a "free account". The email and username

associated with the account should be forwarded to NCI Bioinformatics Training

NCIBTEP@mail.nih.gov (mailto:NCIBTEP@mail.nih.gov). The BTEP staff will associate

each account with the NCI/CCR paid account prior to the first class.

1.

138 Navigating DNAnexus

Bioinformatics Training and Education Program

../DNAnexus_Basics/
mailto:NCIBTEP@mail.nih.gov
mailto:NCIBTEP@mail.nih.gov

Logging into DNAnexus account - Prior to the class each student should log into their

account, and navigate to the R Class project.

Starting R - Starting 30 mins before each class there will be a file labelled "Start

Here.html" at the top level of the project. Select this file by clicking on it, and then find

your name on the list (arranged alphabetically by first name) and click on it. This should

open a window with the R-Studio login page.

2.

3.

139 Navigating DNAnexus

Bioinformatics Training and Education Program

Login using the username "rstudio" and the password "rstudio". At this point you will be

140 Navigating DNAnexus

Bioinformatics Training and Education Program

presented with the R-Studio main interface (shown below).

Splitting the window - If you wish to integrate the class notes into the same window as the

R-Studio interface, click on the file "Split_window.html" (found in the lower right hand

segment) and select the "View in Web Browser" option from the pop-up menu. This will

add the class notes to the top protion of the browser window. There is a horizontal bar

separating the class notes window from the R-studio interface, and this bar can be

dragged up and down to change the size of the window dedicated to each function.

4.

141 Navigating DNAnexus

Bioinformatics Training and Education Program

142 Navigating DNAnexus

Bioinformatics Training and Education Program

Installing R & RStudio

Detailed Instructions for installing R and RStudio can be found here (https://

btep.ccr.cancer.gov/docs/rtools/).

143 Installing R & RStudio

Bioinformatics Training and Education Program

https://btep.ccr.cancer.gov/docs/rtools/
https://btep.ccr.cancer.gov/docs/rtools/
https://btep.ccr.cancer.gov/docs/rtools/
https://btep.ccr.cancer.gov/docs/rtools/

Getting help

Bioinformatics Training and Education Program

Need help?

We will host Q & A help sessions following each lesson on Thursdays' at 1:00 pm. Please email

us at ncibtep@nih.gov if you have questions about course material or you need help with a

specific problem / project.

145 Need help?

Bioinformatics Training and Education Program

References

Bioinformatics Training and Education Program

For Further Reading

Books and / or Book Chapters of Interest

R for Data Science (https://r4ds.had.co.nz/index.html) https://r4ds.had.co.nz/index.html

Hands-on Programming with R (https://rstudio-education.github.io/hopr/) https://rstudio-

education.github.io/hopr/

Statistical Inference via Data Science: A ModernDive into R and the Tidyverse (https://

moderndive.com/3-wrangling.html) https://moderndive.com/3-wrangling.html

The R Graphics Cookbook (https://r-graphics.org/recipe-quick-bar) https://r-graphics.org/

recipe-quick-bar

R Cheat Sheets

BaseR cheatsheet https://btep.ccr.cancer.gov/docs/rintro/resources/base-

r_cheatsheet.pdf

dplyr cheatsheet https://btep.ccr.cancer.gov/docs/rintro/resources/dplyr_cheatsheet.pdf

tidyr cheatsheet https://btep.ccr.cancer.gov/docs/rintro/resources/tidyr_cheatsheet.pdf

ggplot2 cheatsheet https://btep.ccr.cancer.gov/docs/rintro/resources/

ggplot2_cheatsheet.pdf

Other cheatsheets (https://www.rstudio.com/resources/cheatsheets/) https://

www.rstudio.com/resources/cheatsheets/

Other Resources

The R Graph Gallery (https://www.r-graph-gallery.com/) https://www.r-graph-gallery.com/

1.

2.

3.

4.

1.

2.

3.

4.

5.

1.

147 For Further Reading

Bioinformatics Training and Education Program

https://r4ds.had.co.nz/index.html
https://r4ds.had.co.nz/index.html
https://rstudio-education.github.io/hopr/
https://rstudio-education.github.io/hopr/
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
https://moderndive.com/3-wrangling.html
https://r-graphics.org/recipe-quick-bar
https://r-graphics.org/recipe-quick-bar
../../resources/base-r_cheatsheet.pdf
../../resources/dplyr_cheatsheet.pdf
../../resources/tidyr_cheatsheet.pdf
../../resources/ggplot2_cheatsheet.pdf
https://www.rstudio.com/resources/cheatsheets/
https://www.rstudio.com/resources/cheatsheets/
https://www.r-graph-gallery.com/
https://www.r-graph-gallery.com/

	R Introductory Series 2022
	Table of Contents
	Course Overview
	Learning R - The Basics
	Data frames & Data Wrangling
	Data Visualization: GGplot2
	Bioconductor and Rmarkdown
	Test Your Learning
	Lesson1 TYL
	Lesson1 TYL Solutions
	Lesson2 TYL
	Lesson2 TYL solutions

	Additional Exercises
	Exercises: Lesson 2, Part 1
	Exercises: Lesson 2 Tidyverse

	DNAnexus
	Navigating DNAnexus

	Installing R & RStudio
	Getting help
	Need help?

	References
	For Further Reading

	Course Overview
	Welcome to the R Introductory Series 2022
	A series of introductory lessons in R for scientists.

	Course Expectations / Learning Objectives
	Lesson 1
	Lesson 2
	Lesson 3
	Lesson 4

	Required Course Materials

	Learning R - The Basics
	Introduction to R and RStudio IDE
	What is R?
	Why R?
	Where do we get R packages?
	Ways to run R
	What is R Studio?

	Getting Started with R and R Studio
	Creating a R project
	Creating a R script
	Introduction to the RStudio layout
	Uploading and exporting files from RStudio Server
	Saving your R environment (.Rdata)
	Navigating directories
	Using functions
	Getting help
	Test your learning: Questions 1-2

	R basics
	R objects
	Creating and deleting objects
	Naming conventions and reproducibility
	Reassigning and deleting objects
	Object data types
	Mathematical operations
	Vectors
	Test your learning: Question 3
	Creating, subsetting, modifying, exporting
	Logical subsetting
	Other helpful tricks
	Test your learning: Questions 4-5
	A word about lists
	Saving and loading objects
	Wrapping Up (Review / Questions)
	Exporting your R project
	Acknowledgments
	Additional Resources

	Data frames and Data Wrangling
	Working with tabular data in R
	Introducing tidy data
	Tools for working with tidy data
	Let's load the tidyverse library
	Introducing the airway data
	Importing / exporting data
	Creating and summarizing data frames
	Data frame coercion and accessors
	Test your learning: Questions 1-2
	Subsetting data frames
	Introducing Factors
	Test your learning: Questions 3-4
	Find and replace in R
	Save our data frame to a file

	Introduction to data matrices
	Data wrangling with tidyverse (40 minutes)
	Subsetting with dplyr
	Test your learning
	Test your learning
	Introducing the pipe
	Test your learning
	Mutate and transmute
	Test your learning
	Arrange, group_by, summarize
	Test your learning
	Challenge questions

	Data Reshaping
	Review / Questions
	Acknowledgements
	Resources

	Data visualization with ggplot2
	Introducing ggplot2
	The ggplot2 template
	Geom functions
	Mapping and aesthetics (aes())
	R objects can also store figures
	Colors
	Facets
	Using multiple geoms per plot

	Statistical transformations
	Coordinate systems
	Labels, legends, scales, and themes
	Saving plots (ggsave())
	Nice plot example
	Recommendations for creating publishable figures
	Complementary packages
	Resource list
	Acknowledgements

	Bioconductor and Data Reporting
	Introducing Bioconductor
	How to install a Bioconductor package?

	Introducing R Markdown
	Creating an Rmarkdown file

	Acknowledgements
	Resources

	Test Your Learning
	Lesson1 TYL
	Lesson1 TYL Solutions
	Lesson2 TYL
	Lesson2 TYL solutions
	Additional Exercises
	Lesson 2 Exercise Questions: Part 1 (BaseR subsetting and Factors)
	Lesson 2 Exercise Questions: Part 2 (Tidyverse)
	DNAnexus
	Navigating DNAnexus
	Instruction for using DNAnexus for the Intro to R class

	Installing R & RStudio
	Getting help
	Need help?
	References
	For Further Reading
	Books and / or Book Chapters of Interest
	R Cheat Sheets
	Other Resources

